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Dissertation Module: Research Skills Program 

Topic 7: STATISTICS WITH CONFIDENCE 
 

 

Why Statistics? 
As health professionals we apply statistics because it provides us with (1) numbers - 

an unambiguous language understood by everybody worldwide in the same way; and 

(2) tools to measure the uncertainty or random error involved when inferring from a 

sample to the wider target population.  

 

The universal language of numbers allows us to describe data in a precise manner. 

Consider for instance the following clear-cut statement (based on McGervey, J.D., 

1986): For every 10 Million inhabitants, in 1979, 4 persons in Japan, 16 in Canada, 

87 in Israel, 3 in Sweden, 5 in Germany, 1 in England, and 383 in the United States 

were killed by handguns.” The numbers in this sentence tell the full story. If we tried 

to use words instead of numbers we would end up with something rather vague as in: 

“Some people got killed by handguns in Japan, more in Canada, still more in Israel, 

far fewer in Sweden and Germany, really few in England, and very many in the 

United States.” 

    

However, using statistics does more: it also enables us to generalize from the sample 

to the target population. This part of statistics is called inferential statistics. The 

ability to assess the uncertainties involved when deducing from a sample to the 

target population is one of the main reasons for the ongoing success story of 

statistics in the health sciences. Please note that statistics allows us to confirm or 

reject our research hypothesis with statistical confidence. Inferential statistics provide 

tools that allow us to answer our research questions. 

 

Statistics are a core tool of the scientific method which we introduced briefly in 

Chapter 1 and which helps with acquiring knowledge in a standardized and 

universally accepted manner. Statistics form the basis of today’s gold standard of 

evidence-based practice. Statistics not only influence the planning phase of an 

epidemiological study by providing an optimal sample size (for a stated quantitative 

research hypothesis) but will also later in the course of the study inform the 

collection, analysis, presentation, and interpretation of the data.  

 

According to Figure 1 there are two main parts of applied statistics: descriptive and 

inferential statistics. Descriptive statistics are the tools that allow us to describe our 

sample. On the other hand, inferential statistics enable us to draw conclusions about 

the target population, based on results gathered in the sample.    
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Figure 1: The use of statistics in epidemiology: descriptive and inferential 

statistics.  

 
 

 

 

Types of quantitative data 
All quantitative research collects quantitative data, that is, information of 

characteristics which can be directly measured in numbers or coded into numbers. 

These characteristics are called variables. For example, in a study on pre-pregnancy 

physical activity and its effect on gestational diabetes mellitus (based on van der 

Ploeg, H.P. et al., 2010) the characteristics could include: age of the mother, parity, 

height of mother, weight of mother, pre-pregnancy level of physical activity, and 

gestational diabetes. The information collected during the study is called the data. 

The correct choice of a statistical method to analyse the data is dependent on the 

type(s) of the variable(s) collected. 

 

Box 7.1: The types of quantitative data 

 

We broadly differentiate between categorical and numerical data. 

 

Categorical data arise when people fall into one of separate categories.  

For example: Gender has the categories male and female; Gestational diabetes has 

the : categories yes and no; Blood group usually has the categories A, B, AB and 0; 

Level of education can be recorded as less than 12; Year 12 completed; 

apprenticeship or TAFE, tertiary education.  

 

Categorical data can be further classified as being either nominal or ordinal. In 

ordinal categorical variables the categories follow a natural order as in level of 

education: up to year 12; Year 12 completed; apprenticeship or TAFE, tertiary 

education. 

Nominal categorical variables are without such an inherent order as in gender and 

blood group: the categories male and female or O, A, B, and AB do not have a 

natural order.  

 

Numerical data arise from counts or measurements. For example: Age; Number of 

Target population 

Actual population 
Inferential Statistics: 

Confidence Intervals      

(Parameter Estimation); 

Statistical Tests             

(Hypothesis Testing) 

Sample 

Descriptive Statistics: 

Percentage, mean, 

standard deviation, 

median, quantiles, etc. 

Random error 

(“chance”) 
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children; Height; Weight; Level of physical activity.  

 

Numerical data can be further classified into discrete or continuous. Discrete 

numerical variables are usually natural counts and can only take on natural, whole 

numbers. For example, number of children: 0, 1, 2, 3,….or number of sexual 

partners: 0, 1, 2, 3,…… 

Continuous variables are measurements that can take on any real number, including 

numbers with decimal places, within a meaningful range. The values recorded for a 

continuous variable are only limited by our choice of precision. Examples for 

continuous variables are reaction time, age, or weight. 

 

Comments: 

(1) The codes given to the categories of nominal variables for the 

purpose of statistical analysis are arbitrary. For example, gender 

codes could be 1 = male and 2 = female; or vice versa or any other 

dichotomous code combination! With ordinal variables, the coding 

should reflect the natural order. 

(2) In stark contrast, the observed numbers in numerical variables are 

measurements with an intrinsic meaning! For example, height = 175 

means 175 cm. Numerical variables therefore retain quantitative 

information of measurements. 

(3) Genuinely continuous variables are often recorded as discrete or even 

categorical variables.  For example, the age of a person might be 25 

years, 1 month, 16 days, 14 hours, etc. However 25 years is recorded 

(“age at last birthday”) thus creating a discrete variable. In another 

example we might even turn the - naturally continuous - body mass 

index into a categorical variable, by recoding the body mass index as 

underweight, normal weight, overweight, and obese. This 

categorization of a continuously recorded variable however should 

only be done during the analysis phase. If we only record the 

categories of body mass index, then we might not be able to compare 

our findings with published average values or a differing category 

system used in another country.   

Please note: always collect and record numerical information as such and as 

precise as possible. Do not only record categorized information for a 

continuous variable! Categorisation can easily be carried out during statistical 

analysis. 
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Descriptive statistics 
The first step in statistical analysis is a thorough description of the data providing the 

researcher with a good understanding of the results and allowing the reader to 

appreciate the sample. As already discussed in some length, results from a study 

might not be automatically transferable to other populations or situations. For 

example, results from a study conducted with pregnant women, aged 23 to 42 years, 

living in Melbourne might not be transferable to pregnant women, aged 18 to 35 

years from rural Western Australia. A concise description of the sample in a 

publication will allow us to assess whether the conclusions reached by the research 

are likely to be applicable to our own situation.  

 

Correct descriptive statistics summarise the collected data in a meaningful way. 

Which descriptive statistics are used is dependent on the type of variables (see Box 

7.1). Descriptive statistics for categorical variables usually only describe the 

frequency of each observation as percentages, for example, “32% of the study 

participants were female”. Numerical variables are summarised using a measure of 

central tendency together with a measure of dispersion. The most frequently used 

measures of central tendency are the arithmetic mean and the median. These 

measures try to identify the centre of the distribution of the numerical data. The 

arithmetic mean is the sum of the recorded values divided by the number of values; 

the median is the value in the middle of the ordered list of all observations.  

 

Box 7.2a: How to calculate an arithmetic mean? 

 

The arithmetic mean of a sample of n values x1, x2, x3, …., xn is: 

1 2 3 nx + x + x + ...... + x
X =

n
 

 

For example: 

Assume we want to calculate the average age of 9 participants from the study by van 

der Ploeg, H.P. et al. (2010) on pre-pregnancy level of activity and gestational 

diabetes mellitus. The ages of the 9 mothers were 21, 32, 35, 29, 27, 27, 24, 30, and 

28. 

The mean age is therefore:  

1 2 3 nx + x + x + ...... + x 21+ 32 + 35 + 29 + 27 + 27 + 24 + 30 + 28 253
X = = = = 28.1

n 9 9
 

 

 

Box 7.2b: How to calculate a median? 

 

The median (x0.5) of a sample of n values x1, x2, x3, …., xn sorted in ascending order 

is dependent on whether the sample size (n) is odd or even. 

 

(1) If the sample size n is odd, then    0.5

(n+1)
x = th largest observation

2
 

 

For example: 
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In order to calculate the median age of the 9 mothers we first have to sort their ages: 

21, 24, 27, 27, 28, 29, 30, 32, 35. 

Nine is an odd number. Hence the median value is the th9+1
= 5

2
 observation, which 

is 28 years which is the value in the middle of the nine ordered observations. 

 

 

(2) If the sample size n is even, 

then 0.5

n n
x = average of ( )th + ( +1)th largest observation

2 2
 

 

For example: 

Let us assume that there were 10 mothers and the “new” mother is aged 25 years. In 

order to calculate the median age of the 10 mothers we have to sort their ages: 21, 

24, 25, 27, 27, 28, 29, 30, 32, and 35.  

Ten is an even number. Hence the median value is the average of the 5th and 6th 

observation, which is (27 + 28)/2 = 27.5 years. This value is again in the middle of 

the distribution. 

 

Comment: 

The median is the middle value of a distribution; that is, 50% of the values are below 

and 50% of the values are above the median. Statisticians call the median the 50%-

quantile of a distribution. 

 

 

A measure of central tendency is usually accompanied by a measure of dispersion 

indicating the spread of the data. If the arithmetic mean is used as the measure of 

central tendency, then the standard deviation (SD) is the measure of variability of 

choice. If the median is used, the 25% and 75% quantiles - also called the inter-

quartile range (IQR) - are used as the measures of variability. Providing minimum 

and maximum values, that is, the range is sometimes informative, in particular when 

the observed values show little variation.  

 

Box 7.3a: How to calculate a standard deviation? 

 

The basic idea of the standard deviation is measuring the average distance between 

the mean value and each individual observation. 

The standard deviation (SD) of a sample of n values x1, x2, x3, …., xn is: 

n
2

i

i=1

(X - x )

SD =
n - 1


 

That is, the distances of each individual value from the mean value are squared and 

then summed up; the Greek letter Σ stands for sum up. The result is divided by the 

sample size minus 1 and then square rooted. 

 

For example: 

Assume we want to calculate the standard deviation of age of the 9 participants from 

the study based on van der Ploeg, H.P. et al. (2010). The ages of the 9 mothers were 
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21, 32, 35, 29, 27, 27, 24, 30, and 28; and the mean age was 28.1 years. 

The standard deviation of age is therefore:  

n
2

i 2 2 2 2

i=1

(X - x )
(28.1-21) + (28.1-32) + (28.1-35) + ...... + (28.1-28)

SD = = = 4.137
n - 1 8


 

 

We can summarise the age of the participating mothers as mean age of 28.1 (SD 

4.1) years.  

Box 7.3b: How to calculate the 25% and 75% quantiles? 

 

In general, the calculation of the p-quantile of a distribution is dependent on whether 

n x p is an integer (= whole number) or not. In this context n is the sample size and p 

is a number between 0 and 1; p=0.5 for the median. 

 

(1) If n x p is an integer, then the p-quantile xp is the average of the (n x p)th and 

the   

     (n x p + 1)th largest observation. The observations are sorted in ascending 

order.   

 

For example: 

Let us assume that there were 8 mothers, age sorted in ascending order: 21, 24, 27, 

27, 28, 29, 30, and 35 years. 

In order to calculate the 25% and the 75%-quantile for age of these 8 mothers we 

need to look at  n x p. 

For the 25th-quantile (denoted as x0.25), n x p = 8 x 0.25 = 2 is a whole number. 

Hence the 25th-quantile is the average of the 2nd and 3rd largest observation: 

(24+27)/2 = 25.5 

For the 75th-quantile (x0.75), n x p = 8 x 0.75 = 6 is a whole number. Hence the 75th-

quantile is the average of the 6th and 7th largest observation: (29+30)/2 = 29.5 

 

The inter-quartile range of age for this sample of 8 women is (25.5 -29.5); the median 

age is 27.5 years. We can summarize age in this example as median age = 27.5 

years (IQR = 25.5 - 29.5). 

 

(2) If n x p is not an integer, then the p-quantile xp is the kth largest observation 

with  

     k being the first integer larger than n x p. The observations are sorted in 

ascending 

     order.   

 

For example: 

Let us assume that there were 9 mothers age sorted in ascending order: 21, 24, 27, 

27, 28, 29, 30, 32, and 35 years.  

In order to calculate the 25% and the 75%-quantile for age of these 9 mothers we 

need to look at n x p. 

For the 25th-quantile (x0.25), n x p = 9 x 0.25 = 2.25, not a whole number. Hence the 

25th-quantile is the 3rd largest observation (k=3 is the first integer larger than 2.25): 

27. 

For the 75th-quantile (x0.75), n x p = 9 x 0.75 = 6.75, not a whole number. Hence the 
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75th-quantile is the 7th largest observation (k=7 is the first integer larger than 6.75): 

30. 

 

The inter-quartile range of age for this sample of 9 women is (27 – 30); the median 

age is 28 years. We can summarize age in this example as median age = 28 years 

(IQR = 27 - 30). 

 

When do we use the mean and when the median to describe a numerical 
characteristic? This question can be answered by checking the distribution of the 
numerical variable. If the distribution is convex and symmetrical, the mean will be 
similar to the median and the arithmetic mean and standard deviation are used for 
descriptive purposes. If the distribution is convex but asymmetrical, or there are too 
few observations to judge the distribution, then median and inter-quartile range are 
the descriptive measures of choice. Please note that the mean is notoriously 
sensitive to outliers; the median in contrast is a very robust measure.  

Consider the following small example of two series of observations (Figure 2). Series 
II is a convex symmetrical distribution. Series I is identical to series II except for one 
outlier, that is, 97 instead of 9. The consequence of this outlier is that the means of 
the two series are quite different (13 compared to 5). A mean of 13 is not a good 
measure of central tendency for series I as you can tell from Figure 2. On the other 
hand, the median is identical for the two series and seems appropriate for both the 
symmetrical and the skewed distribution.  

 

Figure 2: Mean and median of two series of observations 

 

 

There are formal statistical processes, such as the Kolmogorov-Smirnov test for 

normality, to decide whether to use mean or median and subsequently parametric or 

non-parametric statistics (see, for example, Zar 2010 for more information). However, 

checking the shape of the distribution under question is a reasonable start and 

generally provides a good decision base for the choice of appropriate descriptive 

measures and statistical test procedures.  

 

 

Box 7.4: Descriptive statistics 
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Appropriate descriptive statistics for a variable are dependent on the type of variable 

and – in case of numerical variables – also on characteristics of their distribution. 

 

Type of variable Descriptive statistics used 

Categorical variable Frequency of categories in percent 

For example: Occurrence of gestational 

diabetes mellitus: 9.2%  

Numerical variable  

Distribution is convex and symmetrical: Mean and standard deviation (SD) 

For example: Mean age 28.1 (SD 4.1) 

years 

Distribution is convex but skewed or 

there are too few observations to 

assess the distribution: 

Median and inter-quartile range (IQR) 

For example: Median number of daily 

steps taken pre-pregnancy (pedometer 

counts) is 6544 (IQR 4250 - 11970). 

 

 

 

 

Inferential Statistics 
In epidemiological research often findings from a sample are intended to be 

generalized to a wider target population. The generalizibility of the findings of an 

epidemiological study is dependent on two issues: reliability and validity. The 

question of validity – that is, the presence or absence of systematic error - is mainly a 

question of a proper design and conduct of the study and is the domain of 

epidemiology. The question of reliability – that is, the judgment of random error - is 

the domain of statistics. 

 

Statistical procedures are employed because random error is inherent to all 

epidemiological research due to natural or biological variation. Biological variation 

means that, within “normal” boundaries, differences exist between and within people. 

Take as an example systolic and diastolic blood pressures which vary between but 

also within healthy people quite substantially (Marshall, T., 2004). The biological 

variation inflicts random error onto studies. 

 

No two individuals or groups of individuals are ever exactly alike, yet decisions 

affecting people or the community (= target population) are based on 

experience with other people and communities (= sample) of similar biological 

and social characteristics. Because of these inherent differences these 

decisions cannot be exact; they are always accompanied by some uncertainty. 

This uncertainty is the random error which we aim to judge by using statistics. 

 

Researchers from Melbourne are conducting a randomised controlled trial 

encouraging healthy eating and exercise in pre-school children to prevent obesity 

(based on Skouteris, H. et al., 2010).  Let us assume that the study randomised 100 

non-obese children in the healthy eating & exercise intervention group and another 

100 non-obese children into normal care. At follow-up after one year 5% of children 

in the control group and 2% of children in the intervention group are identified as 
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obese. Thus, the difference in the cumulative incidences of obesity is 3% - in this 

study, that is literally three children. 

 

If this study was repeated in an identical way, but with another 200 children one 

would expect that the results would slightly differ, maybe 4% to 3%, or 6% to 1% - 

just by chance alone! That is, because the difference in the first study was “only” 

three children, hence it could be easily just one child or five children….. One task of 

statistics is to assess whether the result of a study, for example the observed 

difference between two groups, is likely to be attributable to chance, that is random 

error, alone. 

 

Common sense tells us that the smaller the observed difference and the smaller the 

sample size, the more likely it is that the observed difference occurred by chance 

alone. In the above example, 5 children out of 100 children were compared with 2 

children from another 100 children. We can easily imagine that this difference could 

happen by chance alone; that in repeat studies obesity in either group could change 

by one or two children. On the other hand, if this study had 1,000 children in each 

group and found at follow-up 50 obese children in the control and 20 obese children 

in the intervention group, we would be more inclined to “believe” in the intervention 

success; although the difference between the two groups is still 3%. In this case, 

even if the incidence of obesity in both groups changed by one or two children in a 

repeat study, the difference would still be about 3%. 

 

Statistics allow us to quantify the probability that a result occurred by chance 

alone, and thereby saves researchers from having to repeat a study over and 

over again in order to elucidate the impact of random error. 

 

Inferential statistics are applied in two stages of an epidemiological study: (1) during 

the study design to estimate the appropriate sample size which is bound to the 

research hypothesis (see Chapter 10); and (2) during the analysis to confirm or reject 

the research hypothesis. During the statistical analysis we have two options to 

confirm or reject our research hypothesis; we can either use confidence intervals or 

carry out statistical hypothesis testing. 

 

 

Confidence Interval 
Researchers based in Sydney hypothesized that young unemployed Australians 

report worse health in times of low unemployment (based on Scanlan, J.N. and 

Bundy, A.C., 2009). In order to address the hypothesis, the researchers conducted a 

cross-sectional survey at a time of low unemployment. The researchers used the 

SF36 health survey, a validated tool to assess physical and mental health, in a 

sample of 200 unemployed Australians aged 18 to 25 years. Results of the SF36 

were reported as the physical component summary score (PCS) and the mental 

component summary score (MCS). PCS and MCS range between 0 (= poor health) 

and 100 (= excellent health). The mean values for PCS was 52.1 (SD 7.9) and for the 

MCS it was 37.8 (SD 13.9) in the sample of 200 young unemployed Australians. 

 

The first question that inferential statistics will help us addressing is: “What does the 

sample results tell us about the target population?” Please note that inferential 
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statistics only deal with random error. If the results of a study are unbiased, then 

inferential statistics will allow us to relate back to the target population. For example, 

what does the sample results of mean PCS 52.1 (SD 7.9) and mean MCS 37.8 (SD 

13.9) tell us about the – unknown (that’s why the study was conducted in the first 

place) -  population means? This question is answered by the confidence interval 

(CI). 

Figure 3: Population and sample 

 

Please note that “population” in the 

statistical sense is either the actual 

population or the target population, 

depending on whether bias is present or 

absent. 

 

 

 

 

 

We know the sample mean because we measured it.  The confidence interval tells us 

the range within which we can be reasonably certain the true (but unknown, 

unmeasured) target population mean is. Typically, we use the 95% confidence 

interval (so we can be 95% certain) but the level of certainty can be set at any level. 

 

Box 7.5:  The confidence interval for the population mean 

The following formula gives the (1-α)-confidence interval for the population mean:  

 

standard deviation
Formula for lower limit:  sample mean - quantile(α)   

sample size

standard deviation
Formula for upper limit:  sample mean + quantile(α)   

sample size





 

 

Thus, the confidence interval for the population mean is constructed around the 

sample mean. It has the following interpretation: The true but unknown population 

mean lies within the (1-α)-confidence interval with a probability of 1-α. 

Comments: 

(1) The confidence interval allows a statement about the unknown population 

mean by taking exclusively information from one sample into account!  

(2) The population mean lies outside the confidence interval with a probability of 

α. Alpha (α) can take on any value between 0 to 1, however, is most often 

chosen to be 0.05 (or 5%), leading to a 95%-confidence interval. Choosing 

alpha to be 5% is completely arbitrary but has been accepted internationally. 

Please note when a 95%-confidence interval is stated, we are 9% sure that 

the confidence interval includes the population mean. 

 

For more detailed information on confidence intervals please refer to an applied 

biostatistics textbook such as Altman, D. G. (1991), Bland, M. (2000), Zar, J.H. 

(2010) or any other biostatistics book  

 

 

Target population 

Sample 

Sample mean 

Population 
mean 

? 
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Let us now calculate confidence intervals for the mean PCS and the mean MCS from 

the example concerning the unemployed young Australians (based on Scanlan, J.N. 

and Bundy, A.C., 2009). We assumed that the researchers conducted a cross-

sectional study with 200 participants. The sample mean value for PCS was 52.1 (SD 

7.9) and for the MCS it was 37.8 (SD 13.9).  

 

Before starting the calculations, one more bit of information is needed: the quantile 

which is dependent on alpha and the sample size and generally should be obtained 

from a t-distribution table. Please note that the quantile in the formula for the 

confidence interval of the population mean is dependent on alpha and on the sample 

size. If we choose alpha = 0.05 and have a sample size above 60, then 2 is a good 

approximation. Please refer to biostatistics books for more details.  

 

95%-confidence interval for PCS: 

standard deviation
Lower limit: sample mean - quantile(α) × 52.1 - 2 ×

sample size

standard deviation
Upper limit: sample mean + quantile(α) × =

sample size

7.9
= = 52.1 - 1.117 = 51.0

200

7.9
52.1 + 2 × = 52.1 + 1.117 = 53.2

200

 

 

95%-confidence interval for MCS: 

 

standard deviation
Lower limit: sample mean - quantile(α) × 37.8 - 2 ×  

sample size

standard deviation
Upper limit: sample mean + quantile(α) × =

sample size

13.9
= = 37.8 - 1.966 = 35.8

200

13.9
37.8 + 2 × = 37.8 + 1.966 = 39

200
.8

 

 

Thus, we are 95% confident that the true yet unknown population mean for PCS lies 

between 51.0 and 53.2, and that the population mean for MCS can be found within 

35.8 and 39.8. 

 

Please note that confidence intervals for the population mean are symmetrically 

constructed around the sample mean, thus obviously including the sample mean. 

However, confidence intervals do not refer to the sample – they refer to the target (or 

actual) population! 

 

We can calculate confidence intervals for all types of parameters such as mean 

values, proportions, medians, odds-ratios, and relative risks to name just a few. The 

respective formulas do vary in details, but are all based on (1) an α-quantile 

expressing the uncertainty, (2) an estimation of the sample variability, and (3) the 

sample size.  

 

We want to give here one more example of a confidence interval, this time for a 

proportion. Assume that in the example of the Melbourne based randomised 

controlled trial aiming at encouraging healthy eating and exercise in pre-school 
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children to prevent obesity (based on Skouteris, H. et al., 2010), at follow-up after 

one year 5% of children in the control group and 2% of children in the intervention 

group were identified as obese. Thus, the difference in the cumulative incidences of 

obesity was 3%.  

The 95% confidence interval for this difference of 3% is [-2.1, 8.1](see Bland, M., 

2000, for the formula). Thus, we are 95% confident that the true yet unknown 

difference in incidence of obesity in the population is between -2.1% and 8.1%. Note 

that this confidence interval includes the zero; healthy eating could be better for 

children, but it could also be worse, and in fact we cannot confidently exclude the 

possibility that there is no difference at all between the two groups!  

 

If the confidence interval would not include the zero (such as in [1.0, 5.0] for 

example), then we could be 95% sure that the true difference between control and 

intervention group was unequal to 0, and hence could assume a statistical difference 

between the groups. However, our result does not allow such a conclusion.  

 

Box 7.6: The width of a confidence interval 

 

It is obvious from the discussion above that the width of a confidence interval decides 

on the precision of the statement that is made by the interval. The narrower a 

confidence interval, the more precise the assertion about where the true population 

parameter lays. Thus, it is of interest to discuss how the width of a confidence 

interval can be changed.  

 

In general, the width of a confidence interval for a specific parameter is dependent 

on:  

(1) the level of uncertainty α;  

(2) the observed sample variability of the parameter; and  

(3) the sample size.   

  

Have a look back at the formula of the CI for the population mean to identify these 

quantities. 

Thus, changing any of these quantities will have ramifications on the width of the CI.   

 

(1) Changing the level of uncertainty α 

If certainty is decreased, for example, the uncertainty level of alpha increases from 

say 5% to 10%, while everything else remains unchanged, then the width of the CI 

decreases, that is, the precision increases!  

 

To achieve 100% certainty (α = 0), the confidence interval would cover the entire 

possible range of the parameter; for a proportion for instance from 0% to 100%, and 

no information at all would be gained from the sample. Therefore, some uncertainty 

has to be allowed in the construction of a CI and 5% is the internationally accepted 

level. As a consequence the level of certainty is usually not decreased to achieve a 

narrower confidence interval. 

 

(2) Changing the sample variability 

If the variability is decreased while everything else remains unchanged, the width 

of the CI decreases, that is, precision increases.  
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However, changing the variability of a characteristic in epidemiological terms means 

recruiting a more homogenous sample. To achieve this, increasingly restrictive 

inclusion and exclusion criteria have to be employed and the generalizibility to the 

original target population – the overall aim of the study - is lost. Therefore a reduction 

in variability is also not an option to achieve a narrower confidence interval.  

On the other hand, some laboratory experiments are able to achieve high precision 

even with small sample sizes by using very homogenous “participants”, such as 

genetically engineered mice.  

 

(3) Changing the sample size 

If the sample size is increased while everything else remains unchanged, the width 

of the confidence interval decreases, that is, precision increases. 

 

By increasing the sample size, we will most likely also increase the required 

resources to conduct the study. However, increasing the sample size is in fact the 

only practical and acceptable way of increasing the precision, that is 

narrowing, the confidence interval.  

 

In the example of the RCT to prevent obesity in pre-school children, the difference in 

cumulative incidences of obesity was 3% (95% confidence interval = -2.1% to 8.1%). 

This result was based on 100 children per group. If the study had recruited 1,000 

children per group instead while everything else remained the same, then the 

respective 95%-confidence interval for the 3% difference would have been 1.4% to 

4.6%. 

 

Note (1) that the width of the CI for the population mean decreased with increasing 

sample size; from 10.2% to 3.2%. (2) The 95% CI when there are 1,000 children in 

each group no longer includes the zero, that is, the “no difference” result. Hence we 

are now confident that there is a statistical difference between intervention and 

control group!  

If the initial research hypothesis for this study was to detect a 3% difference in 

cumulative incidence, then the study with 200 children would have been “under-

powered”. In actual fact, 590 children per group is the optimal sample size to detect a 

difference of 3% with adequate statistical power. 

 

 

 

 

 

Statistical Hypothesis Testing 
Statistical hypothesis testing is used to formally confirm or reject a comparative 

operational research hypothesis.  Statistical hypothesis testing is based on the very 

same reasoning outlined above for confidence interval estimation. However, usually 

statistical hypothesis testing involves comparing two or more groups directly.  

 

For example, children with Fetal Alcohol Spectrum Disorders (FASD) may have 

significant neuro-behavioural problems persisting into adulthood (Peadon, E., et al., 

2009). A trial was conducted to investigate the effect of a language intervention on 
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basic literacy and numeracy skills in children with FASD (based on Adnams, C.M., et 

al., 2007). Language and literacy training was administered to a group of children 

with FASD. The children were followed up for 9 months. The language and literacy 

intervention focussed on phonological awareness and other pre- and early literacy 

skills needed for reading and spelling.  

 

A comparative research hypothesis of this study such as: “In children with FASD, 

there is a difference between the general scholastic test result for reading at baseline 

and after language and literacy training ” can be tested by judging how likely it is that 

any observed difference in the test result is due to random error alone. 

This judgement can be based on either of two statistical tools: 

(1) By calculating the 95%-confidence interval for the mean difference  between 

baseline scores and scores after intervention (in the example above it was actually 

one group and the research included before and after intervention assessments, but 

the same approach could be used to compare two groups). If the 95%-confidence 

interval does not include zero or more generally the null-value, then the difference in 

results is (or groups) is called “statistically significantly different”.  

(2) By conducting a statistical test which directly gives the probability that the 

difference between the two results (or two groups) is attributable to chance alone. 

 

There is quite a large number of different statistical tests and depending on the 

type(s) of variables involved, the parameters under study and the research 

hypothesis, one particular test is usually most appropriate. We now come to the main 

principle - and necessary terminology - of statistical testing and will then provide 

some guidance how to choose a suitable bivariate test for a specific study situation. 

“Bivariate” means that only two variables are involved in the analysis; usually the 

study factor and the outcome.  

 

Box 7.7:  Statistical tests, p-values and statistical significance 

 

A statistical test is a decision making tool used to confirm or reject a research 

hypothesis. A statistical test judges how likely it is that an observed difference 

between groups, or an association between characteristics, is likely to be due to 

random error (chance) alone. A statistical test makes inferences from findings of the 

sample to the wider population. 

In the following the term “observed difference” is used in the wider sense of also 

incorporating any observed associations or correlations between variables.  

 

The result of a statistical hypothesis test is called “p-value”. The p-value gives the 

probability of obtaining in a sample a difference as large as the actually observed one 

(or an even larger one) if in reality, that is, in the target (or actual) population, there is 

no difference. Thus the p-value is the probability that an observed difference is 

attributable to chance alone! The smaller the p-value the less likely that an observed 

difference occurred by chance alone. 

 

Comments: 

(1) By convention, a p-value below 0.05 is considered statistically significant. As 

with confidence intervals, allowing 5% uncertainty is completely arbitrary, however, 

internationally accepted.  
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For example, p = 0.006 implies, that there is a 6 in 1,000 probability (0.6%) that the 

observed (or an even larger) difference occurred by chance alone. Since this p-value 

of 0.006 is smaller than the 0.05 threshold, the result is termed statistically 

significant. The result probably is not the result of random error; it probably 

accurately describes the target population. 

 

(2) In the scientific literature the word “significant” should be used exclusively in a 

statistical context, that is, only if a statistical test was conducted resulting in a p-value 

of less than 0.05. Conventionally the calculated p-value is stated when we use the 

word “significant” in a manuscript. 

 

(3) Statistical significance does not automatically imply clinical relevance! 

Small differences can be statistically significant if only the sample size is large 

enough, but may not be clinically relevant. Please note that first the clinical relevance 

of an observed difference has to be established before any statistical test is 

conducted! If the observed difference is clinically irrelevant, no statistical test should 

be conducted. 

 

 

The study of children with FASD introduced above found that the language and 

literacy intervention was able to improve the manipulation of syllables (p=0.034) and 

written letters (p=0.004) significantly, but not the general scholastic test results for 

reading (p=0.152) and mathematics (p=0.651)(based on Adnams, C.M. et al., 2007).   

 

For example, at nine months of follow-up the mean score for manipulating syllables 

was 79.6 (SD 34.3) compared to 69.4 (SD 38.0) at baseline (p=0.034). The p-value 

of 0.034 implies that the probability of obtaining this (or an even grater) difference of 

10.2 by chance alone is 3.4%.  

 

The mean results for reading words were 64.2 (SD 39.1) at baseline and 69.4 (SD 

39.5) after 9 months of follow-up (p=0.152). The observed difference of 5.2 was not 

statistically significant; the p-value of 0.152 is greater than the threshold level of 0.05. 

A p-value of 0.152 implies that there is a 15.2% probability of this difference (or an 

even greater difference) being found in the sample even if in reality there is no 

difference at all in the target population. A probability of 15.2% is too large for us to 

accept significance. 

 

 

Errors in Statistical Testing and the Problem of 

Multiple Testing 
The p-value assesses how likely it is that an observed difference is attributable to 

chance alone. If the p-value is below the threshold (usually 5%) we call the difference 

statistically significant and assume that there is in fact a difference in the wider 

population. But we can’t be 100% sure; there is still a small chance (below 5%) that 

the observed difference is attributable to chance alone and that we commit an error - 

called type I or alpha error - by accepting a difference which in reality does not 

exist.  
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On the other hand however, there is also room for error if we fail to recognize a 

factually existing    difference as significant. This potential error is called type II or 

beta error. A beta error arises for instance if an exposure is in reality linked to an 

outcome, but the study was too small to detect it as significant! To minimize this type 

II error, it is important that the study is large enough, in other words, that it has 

enough statistical power to detect an existing difference as significant. Please note 

that the power of a study is the probability that the study will detect an association or 

an expected difference if it truly exists in the target population. 

 

Thus, two types of potential errors have to be faced when conducting a statistical 

test: (1) Alpha error (α; type I error) and (2) Beta error (ß; type II error). Table 1 

summarizes the situation. Type I error implies that one falsely assumes a significant 

difference between groups, when in reality there is none. Type II error implies that 

one fails to detect an existing difference as significant.  

 

 

 

Table 1: The errors in statistical hypothesis testing 

 Reality 

Statistical test No difference Difference 

No difference 1-Alpha Beta error 

(false negative) 

Difference Alpha error 

(false positive) 

1-Beta  

Power of test 

 

Because of the convention that only a p-value less than 0.05 will be called significant, 

the Type I error (alpha) cannot exceed 5% and in this sense is under control. But this 

5% threshold is only true if one single statistical test was performed in a data set! 

Usually, however, numerous statistical tests are performed during data analysis and 

the overall alpha error increases with each single test. This problem is called 

multiple testing and a small list of the increasing alpha error with increasing 

numbers of tests performed is detailed in Table 2.   

 

Table 2: Overall alpha error and number of statistical tests conducted 

Number of statistical tests Overall alpha error 

1 

2 

3 

4 

5 

10 

20 

50 

100 

infinite 

0.05 

0.098 

0.143 

0.185 

0.226 

0.401 

0.642 

0.923 

0.994 

1 

 

Naturally we do not know which of the statistical tests conducted is (are) significant 

by chance alone. However, we can and should take care of the issue of multiple 

testing by listing during the design stage all the research hypotheses we want to 
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investigate so that the sample size can be adequately adjusted. Alternatively, at the 

analysis stage, the alpha level for the single tests can be adjusted, for instance by 

the Bonferroni-Holm procedure (Bland, M., 2000), in a way so that the overall alpha 

level still holds at 5%.  

 

The Type II error is controlled by conducting an appropriate sample size calculation 

during the design phase of the study. The sample size calculation will ensure that 

there is adequate power to detect an expected difference as significant if it truly 

exists in the target population. By convention, studies should be designed large 

enough to have at least a power in excess of 80%.  

Please note that an “under” powered epidemiological study, that is, a study with 

inadequate sample size for a specific research question is likely to commit a Type II 

error! That is, the study will fail to detect an existing difference because the sample 

size is too small. Drawing negative, that is, non-significant, results from an under-

powered epidemiological study is inappropriate. 

 

A study will only be able to confirm or reject the pre-specified quantified research 

hypotheses with statistical confidence for which it was designed. All other statistical 

tests performed during the analysis phase of the study, that is unplanned “post hoc” 

analyses, are subject to uncontrolled Type I and Type II error. If any of these 

“uncontrolled” statistical tests suggest a “significant” finding, then such a finding 

requires confirmation by an adequately planned independent study.   

 

 

Selecting an appropriate bivariate statistical test   
The choice of the correct statistical test procedure for a specific bivariate (two 

variables) test situation is dependent on the type(s) of the two variables involved. 

Once identified, this information leads to the right group of statistical tests as outlined 

in Figure 4.  

(1) If both variables are numerical (for example, age and level of physical activity) 

then the correct statistical test procedures can be found in group1, the 

correlation/regression group;  

(2) If both variables are categorical (for example, gender and type of employment) 

then the correct statistical test belongs to group2, the Chi-square group; and  

(3) If one variable is numerical and the other is categorical (for example, gender and 

level of physical activity) then the correct statistical test procedure comes from 

group3 and is either a parametric t-test/Analysis of Variance or a non-parametric 

Wilcoxon type test. 
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Figure 4:  Classification of bivariate statistical tests 

 

 

Please refer to the chapter on “Choosing the statistical method” in Martin Bland’s 

(2000) book for further details. A description of how to calculate bivariate statistical 

tests by hand is provided in most standard statistical textbooks (see, for example, 

Zar, J., 2010 or Bland, M., 2000). 

 

 

Box 7.8:  How to choose a specific bivariate statistical test  

 

Example 1: In a study on pre-pregnancy physical activity and its effect on gestational 

diabetes mellitus (based on van der Ploeg, H.P. et al., 2010) the researchers 

investigated whether age of the mother, level of education, parity, and pre-pregnancy 

level of physical activity were related with gestational diabetes. Assume we also want 

to investigate the association between age of the mother and her pre-pregnancy level 

of physical activity. 

First variable Second variable Bivariate statistical test 

Age of mother -  

numerical 

Gestational diabetes - 

categorical 

Group 3 –  

either t-test or Wilcoxon 

test 

Level of education - 

categorical 

Gestational diabetes - 

categorical 

Group 2 – 

Chi-square test 

Parity –  

numerical, discrete 

Gestational diabetes - 

categorical 

Group 3 –  

either t-test or Wilcoxon 

test 

Bivariate Test 

Procedures 

Group 1:                
Two numerical 

variables 

Group 3:                
One numerical     

One categorical 

Correlation/Regression          
Correlation (two-sided association) 
Regression (one-sided association) 

Group 2:                
Two categorical 

variables 

Chi -square tests                              
Classic test and for trend (unpaired)    
McNemar test (paired) 

Do Normality assumptions hold?  

YES NO 

Parametric Test                                       
Two groups:   t-test (paired and unpaired)                       
More groups:   ANOVA (unpaired) and 

ANOVA for repeated measurements (paired) 

Non-Parametric Tests                              
Two groups:  Wilcoxon test (paired and unpaired)        
 More groups: Kruskal-Wallis test (unpaired) and 

Friedman test (paired) 
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Pre-pregnancy level of 

physical activity - 

numerical 

Gestational diabetes - 

categorical 

Group 3 –  

either t-test or Wilcoxon 

test 

Age of mother -  

numerical 

Pre-pregnancy level of 

physical activity - 

numerical 

Group 1 – 

Regression 

 

Example 2: Researchers from Melbourne are conducting a randomised controlled 

trial encouraging healthy eating and exercise in pre-school children to prevent 

obesity (based on Skouteris, H. et al., 2010). Let us assume that the study 

randomised 100 non-obese children in the healthy eating & exercise intervention 

group and another 100 non-obese children into normal care. At follow-up after one 

year 5% of children in the control group and 2% of children in the intervention group 

are identified as obese. 

First variable Second variable Bivariate statistical test 

Intervention or control - 

categorical 

Obesity - categorical Group 2 – 

Chi-square test 

 

Example 3: Researchers based in Sydney hypothesized that young unemployed 

Australians report worse health in times of low unemployment (based on Scanlan, 

J.N. and Bundy, A.C., 2009). In order to address the hypothesis, the researchers 

conducted a cross-sectional survey at a time of low unemployment and repeated the 

study at a time of high unemployment The researchers used the SF36 health survey 

as the outcome measure. Results of the SF36 were reported as the physical 

component summary score (PCS) and the mental component summary score (MCS). 

First variable Second variable Bivariate statistical test 

Unemployment high or 

low - categorical 

PCS and MCS – both 

numerical 

Group 3 –  

either t-tests or Wilcoxon 

tests 

 

Example 4:  A trial was conducted to investigate the effect of a language intervention 

on basic literacy and numeracy skills in children with FASD (based on Adnams, C.M., 

et al., 2007). Language and literacy training was administered to a group of children 

with FASD. The children were assessed at baseline and then followed up for 9 

months. The language and literacy intervention focussed on phonological awareness 

and other pre- and early literacy skills needed for reading and spelling. 

First variable Second variable Bivariate statistical test 

Before and after 

intervention - categorical 

Assessment of literacy 

skills - all numerical 

Group 3 –  

either paired t-tests or 

Wilcoxon tests 
 

 

Thus the identification of the type of the two variables involved brings us already to 

the right group of tests. As we can see from Figure 4, however, some more concepts 

need to be introduced before an unambiguous decision for a specific test can be 

made:   
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One-sided versus two-sided scientific question and tests 

This decision is relevant for all three test groups and refers to the distinction between 

a situation where the researcher is interested (1) in both directions (e.g. group A 

differs from group B, that is, group A may be better or worse than group B) in which 

case we have a two-sided scientific question and use accordingly a two-sided 

statistical test; or (2) in only one direction (e.g. group A is better than group B) in 

which case the scientific question and the correct test is one-sided.  

For example, the Sydney based study which hypothesized that young unemployed 

Australians report worse health in times of low unemployment compared to times of 

high unemployment (based on Scanlan, J.N. and Bundy, A.C., 2009), stated a one-

sided scientific question which will require a one-sided statistical test, 

 

Please note that one-sided statistical tests are more likely to return statistically 

significant results than two-sided tests if the data follow the pre-defined one-sided 

hypothesis. Therefore one-sided testing has to be thoroughly justified. Most research 

hypotheses are formulated as two-sided questions.  

 

Paired versus unpaired test 

If the research hypothesis under consideration involves the comparison of two (or 

more groups) who are independent from each other (in most cases consist of 

different individuals) then the unpaired version of the statistical test procedure is 

used. If the research hypothesis involves comparing the same people who were 

measured twice or more often then the paired version of the statistical is correct. 

This distinction is relevant in statistical test groups 2 and 3 only. 

 

For example, in the study on pre-pregnancy physical activity and its effect on 

gestational diabetes mellitus (based on van der Ploeg, H.P. et al., 2010), the 

researchers compared women with gestational diabetes with women without 

gestational diabetes. These two groups of women were independent (different 

women) and hence an unpaired test procedure is adequate. On the other hand, the 

experiment which was conducted to investigate the effect of a language intervention 

on basic literacy and numeracy skills in children with FASD (based on Adnams, C.M., 

et al., 2007), the children were assessed at baseline, followed up for 9 months and 

then measured again. That is, the skills of the same children were assessed twice 

and the results compared; thus we clearly face a paired scenario. 

 

Parametric versus non-parametric test 

In bivariate test groups 1 and 3 a decision between parametric and non-parametric 

statistical test is required. This distinction is linked to the distribution of the numerical 

variable(s) involved. If the numerical variable is approximately normally distributed 

(see below) in all categories of the categorical variable (group 3), or both numerical 

variables are approximately normally distributed (group 1), then a parametric test is 

used. Otherwise a non-parametric test and procedures will be conducted.  

 

As a rule of thumb, a numerical variable is approximately normally distributed if 

(1) the distribution is convex and symmetrical; (2) mean and median differ by less 

than 10%; and (3) the standard deviation is less than a third of the mean value (this 

last criterion is only appropriate for distributions which are not centrally located 
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around zero). One can also test for Normality formally by using the Kolmogorov-

Smirnov test (Zar, 2010). 

 

Regression and Correlation: one-sided versus two-sided association 

Statistical test group 1 differs from the two other groups as regression and correlation 

procedures are not testing for a difference, but rather investigate whether an 

association between two numerical variables exceeds in strength what would be 

expected by chance alone. This association can either be one- or two-sided.  

 

When the association between the two variables is one-sided, that is, one variable 

may influence the other but the reverse is not possible, then a regression approach is 

used and in the graphical display, a scatter plot, the independent variable is depicted 

on the x-axis. The association between age of mother and pre-pregnancy level of 

physical activity is clearly a regression example: age may influence the level of 

physical activity (as we get older, we might be less active), however, the level of 

physical activity cannot influence age. Age is the independent variable and in a 

scatter plot is depicted on the x-axis.  

 

When the association is two-sided, that is, both variables can influence each other, 

then a correlation approach is used and the allocation of the variables to the axes of 

the scatter plot is arbitrary. An example of a two-sided association is the association 

between level of physical activity and body mass index. Either characteristic could 

influence the other; there is no clear independent variable hence this is an example 

of a correlation problem. 

 

Survival analysis 

One additional bivariate test, the logrank test, is worth mentioning when introducing 

the most common bivariate test procedures. When the occurrence of a specific 

event, such as death, is observed in a cohort of people who are followed up for a 

period of time, special statistical procedures (survival analysis) may become 

necessary since the individual survival time, that is the individual follow-up time to the 

event, is usually unknown for at least some people in the cohort, because not 

everybody will have the event during the study period. The participants who do not 

have the specific event during the follow-up period or who withdraw from the study 

are called censored cases. These participants cannot be deleted from the data set 

because this would lead to an underestimation of the survival probability – as these 

people were observed and did survive for some time. In this situation we cannot use 

a t-test or Wilcoxon test to compare groups, but we need to calculate the logrank test 

to compare survival probabilities between groups. For further details on survival 

analysis please refer to Altman, D. (1991).  

 

 

The pitfalls of agreement and equivalence 

All of the above introduced statistical test procedures refer to statistical tests for 

difference. However some comparative research questions might not ask for 

difference, but for equivalence of effects or for agreement between observers or 

instruments. Both situations require special statistical test procedures. For example, 

researchers based in Mackay conducted a randomised controlled trial to compare the 

standard management of keeping wounds dry and covered with allowing wounds to 
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be uncovered and wet in the first 48 hours following minor skin excision (Heal, C. et 

al., 2006). The research hypothesis for the study was that both the dry and the wet 

management of wounds will lead to very similar infection rates. Hence the study was 

not asking for whether infection rates between the wet and the dry patient group were 

different, but whether they were equivalent. It is tempting to use a statistical test of 

difference (i.e. a Chi-square test in this example) and interpret a non-significant result 

as “no difference”. However, this interpretation is wrong! As outlined before, any 

difference even the smallest one becomes statistically significant given a large 

enough sample size. In other words, if a statistical test results in “no significant 

difference”, it mainly implies that the sample size was not large enough to detect the 

difference.  

 

When testing for equivalence, first the maximal difference which can still be 

considered clinically “equivalent” must be defined. A simple test of equivalence is 

then to assess whether the two-sided confidence interval of the difference is 

completely covered by the maximal allowable difference interval; if so the observed 

difference is significantly equivalent. We can also calculate p-values for equivalence 

tests, however, this is not straight forward and if you are interested in more technical 

information about statistical hypothesis testing for equivalence, we suggest the book 

by Wellek, S. (2003). 

 

Similarly, questions of agreement need special consideration. When agreement 

between let’s say two observers is under investigation it is obviously not good 

enough if the two observers agree by more than chance alone; but this is exactly 

what statistical tests for difference test. Agreement however needs more than 

showing that an association beyond chance exists. We need to apply specially 

developed measures of agreement. For example, researchers from Queensland 

assessed whether parents were able to identify and count the number of moles on 

their children’s skin correctly (Harrison, S.L., et al., 2002). The number of moles a 

person has is the strongest risk factor for melanoma. Moles are visible to everybody 

and therefore it is of interest to investigate whether a risk assessment can be done 

by lay persons. In Harrison’s study, counts of moles from parents were compared 

with counts from dermatologists and counts from photographs. The question was 

whether these different methods of counting moles were in concordance. 

 

There are agreement measures available for numerical data as well as for 

categorical data. For a numerical characteristic, graphical assessment (Bland, J.M. 

and Altman D.G., 1986) and special correlation coefficients (Lin, L., 1989) can be 

used to assess agreement. For a categorical characteristic, percentage of overall 

agreement and the kappa statistic (Fleiss, J.L., 1981) are available.  
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MULTIVARIABLE STATISTICAL ANALYSIS 

Studying health phenomena in human populations is usually more complicated 

than just relating two characteristics, such as age and quality of life. Quality of life 

might be influenced by other characteristics such as gender, severity of disease, or 

socio-economic status. That is, bivariate statistical analysis is often insufficient to 

adequately address the research question under study. The main advantage of 

multivariable techniques in the health sciences is that they enable the researcher to 

assess more than one single study factor at a time and also allow adjustments for the 

influence of factors other than the study factor. These “other factors” are called 

confounders and are a common problem in quantitative studies. 

  

Please note that in the health sciences multivariable analysis is often called 

multivariate.  

 

Confounding occurs when extraneous variables (called confounders) which are 

associated with both the study factor and the outcome distort the bivariate 

association under study. In randomised studies confounding should be largely 

controlled and as a consequence statistical analysis of randomised controlled studies 

can be mostly restricted to bivariate tests. Multivariable analyses usually become 

necessary in studies in which we cannot randomise or in which randomisation failed.  

 

For example, in the study on pre-pregnancy physical activity (= study factor) and its 

effect on gestational diabetes mellitus (= outcome) (based on van der Ploeg, H.P. et 

al., 2010) the researchers might consider the body mass index of the mother as a 

potential confounder. Obesity of the mother is a risk factor for gestational diabetes, 

and body mass index might be negatively associated with physical activity. Hence, 

one could argue that part of the association found between pre-pregnancy physical 

activity and gestational diabetes may be due to the body mass index of the mother. 

Therefore, we face a multivariable situation since we need to take the body mass 

index of the mother into account in order to assess the relationship between pre-

pregnancy physical activity and gestational diabetes.  

 

Before multivariable statistical analysis can be conducted, several preparatory steps 

are usually required. The first step for any multivariable approach is always a 

thorough descriptive analysis. At least two additional steps are necessary: a detailed 

examination of all bivariate associations between all variables involved and the 

identification of an appropriate coding for all variables. More detailed advice on 

preparation for multivariable analysis can be found in Feinstein’s (1996) book. 

 

Selecting an appropriate multivariable model 
The selection of a suitable multivariable model is dependent on a number of 

considerations which include the research hypothesis, the type of the target variable 

(outcome) and, to a lesser degree, the types of independent variables, and model-

specific statistical assumptions. Table 3 provides a commented overview of the 

multivariable models most frequently used in the health sciences. 
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Table 3: Overview of multivariable models most frequently used in the health 

sciences. 

Target 

variable 

Multivariate 

model and use 

Main assumptions Comments 

Numerical - 

continuous 
Multiple linear 

regression 

analysis 

Assesses strength 

and direction of 

relationship 

Normality, linearity, 

homoscedasticity, no 

outliers  

(1) Classically all independent variables are 

continuous, in reality all types can be used 

if dummy coded; 

(2) Discrete or ordinal target variables with 

many categories can also be analysed; 

(3) If linearity is violated transform data or 

use non-linear regression analysis. 

Numerical -

continuous 
Analysis of 

Variance  

Assesses whether 

relationship exists 

Normality, 

homoscedasticity, 

equal sample sizes, 

random sampling 

(1) Classically all independent variables are 

nominal (ANOVA), generalizations for 

continuous variables available (ANCOVA, 

MANCOVA); 

(2) Equal sample size requirement per cell, 

might be fulfilled in experimental designs. 

Categorical - 

binary 
Logistic 

regression 

Assesses strength 

and direction of 

relationship 

Linearity, 

Homogeneity of 

variances, 

homoscedasticity of 

residuals, no outliers 

(1) Preferred over discriminant function 

analysis because normality of independent 

variables not required; 

(2) Transform data if linearity is violated.  

Categorical - 

binary 
Probit analysis 

Assesses strength 

and direction of 

relationship  

Linearity, 

Homogeneity of 

variances, 

homoscedasticity of 

residuals, no outliers 

(1) Specific regression analysis mainly used 

in toxicology to analyse dose-response and 

binomial response experiments; 

(2) Approach very similar to logit 

regression. 

Categorical – 

more than 2 

categories 

Polytomous and 

ordered logit 

analysis  

Assesses strength 

and direction of 

relationship 

Linearity, 

Homogeneity of 

variances, 

homoscedasticity of 

residuals, no outliers 

(1) Direct generalization of logistic model; 

(2) Transform data if linearity is violated. 

Numerical or 

Categorical 

or  

“moving 

binary” 

CART* 

Assesses size and 

direction of 

effects; Identifies 

interactions and 

collinearities 

Free of assumptions; 

Explorative data 

analysis – not truly a 

multivariable model 

(1) Different versions available for different 

types of target variables; 

(2) Delivers estimates of the effects 

assessed and a graphical tree displaying 

effect sizes; 

(3) Defines risk or prognostic groups. 

Survival 

(“moving 

binary”) 

Cox proportional 

hazard analysis 

Assesses strength 

and direction of 

relationship with 

mortality 

Proportional hazards 

and linearity 

(1) Robust method to analyse binary 

outcome moving in time; 

(2) Transform data if linearity is violated; 

(3) Sample size requirements are dependent 

on expected differences and the event rate. 

*CART = Classification and Regression Tree analysis 



Dissertation Module: Research Skills Program   Topic 7 

 
 

25 | P a g e  

 

 
Box 7.9: Multivariable models 
A multivariable model is used to investigate the relationship between study factor(s) 
and outcome by simultaneously allowing adjustment for confounding. Multivariable 
models assess the effects of several study factors together. Multivariable models are 
required in randomised controlled trials when randomisation failed. The choice of an 
appropriate model is foremost dependent on the type of the outcome variable. 
 
Examples: 

(1) Researchers from Brisbane conducted a cross-sectional study of 132 healthy 
adult Australians to investigate the contributions of the HTR2A gene, chronic 
psychological stress, and impulsivity to the prediction of cigarette smoking 
status (White, M.J., et al. 2010). The outcome was current cigarette smoker 
(“no”/”yes”). Therefore, the researchers conducted a multivariable logistic 
regression analysis to estimate the genetic effect on smoking adjusted for 
gender, severity of depressive symptoms and chronic stress.  

(2) Another research group based in Brisbane aimed to identify factors 
contributing to reduced quality of life (= outcome) in an older population 
referred to a community rehabilitation team (Comans, T.A. et al., 2010). The 
outcome variable “quality of life” is numerical. Hence the researchers used 
multiple linear regression analysis to investigate the impacts of participation 
in functional activities, history of falls, number of medications, number of co-
morbidities, depression, environmental hazards, physical function, and 
nutrition on quality of life. 

 

 

 

 

Presenting results from multivariable modelling 
Lastly we would like to give you an impression of how results from multivariable 
analysis are presented by an example from a study conducted by Australian 
researchers examining pregnancy outcomes for Indigenous people in a regional 
setting (Panaretto, K. et al., 2006). The results presented in Table 4 are based on a 
prospective cohort of 386 singleton births to women attending Townsville Aboriginal 
and Islander Health Services (TAIHS) for shared antenatal care between January 1 
2000 and December 31 2003. 
 

The model presented in Table 4 is an hierarchical model, however the effects of 
urinary track infection and of hazardous drinking habits are not stated since the 
single effects cannot be interpreted when the interaction between them is included. 
The model was adjusted for the confounding effects of age of mother and drug use.  
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Table 4: Descriptive and multivariate logistic regression results of a cohort 
study of predictors of low birth weight for gestational age of 386 Indigenous in 
Townsville between 2000 and 2003 (based on Panaretto, K. et al., 2006).  
 

 Low birth weight for 

gestational age 

  

Predictor no  

(n = 352) 

yes 

(n = 34) 

RR* 

[95%-CI]** 

p-value 

Body mass index [kg/m
2
] continuous 0.92 

[0.85, 0.99] 

= 0.0311 

Mother was active smoker 

   No (= baseline) 

   Yes 

 

140 

212 

 

5 

29 

 

1 

3.7 [1.2, 11.7] 

 

 

= 0.0245 

Pregnancy induced hypertension 

   No (= baseline) 

   Yes 

 

328 

24 

 

29 

5 

 

1 

6.6 [1.9, 22.7] 

 

 

= 0.0025 

Interaction between urinary track 

infection and hazardous drinking  

   Baseline*** 

   With urinary track infection 

   AND hazardous drinking 

 

 

343 

 

9 

 

 

25 

 

9 

 

 

1 

 

7.0 [1.01, 

46.6] 

 

 

 

 

= 0.0453 

*RR = Relative risk; **95%-CI = 95% confidence interval; ***Baseline = no urinary 
track infection OR no hazardous drinking habits. 
 

 

Interpretation of the results from Table 4:  

(1) The higher the body mass index the less likely a baby was born with low 

birth weight for gestational age. The relative risk was 0.92, that is, the 

effect was protective (RR < 1). Body mass index was assessed in the 

model as a continuous variable, that is, the 0.92 relates to a change of 1 

kg/m2. This is why the RR shows an effect relatively small in comparison to 

the other characteristics. Please note that body mass index should have 

been linearly related with low birth weight for gestational age in order to 

allow this interpretation. 

(2) Mothers who were active smokers were 3.7 times more likely to give birth 

to a child with low birth weight for gestational age compared to mothers 

who were not actively smoking at that time. We can be 95% confident that 

the true relative risk is between 1.2 and 11.7. The result was statistically 

significant, as the 95% confidence interval of the relative risk does not 

include 1. The p-value reflects this observation. P=0.0245 implies that the 

likelihood of observing a relative risk of 3.7 (or even larger) by chance 

alone (that is, without a factual difference in the wider population) is 0.0245 

(or 2.45%).   

(3) Mothers who suffered from pregnancy induced hypertension were 6.6 

times more likely to give birth to a child with low birth weight for gestational 

age compared to mothers who did not have pregnancy induced 

hypertension. We can be 95% confident that the true relative risk in the 
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wider population is between 1.9 and 22.7. The result is statistically 

significant, as the 95% confidence interval of the relative risk does not 

include 1. This statement is again corroborated by the p-value of 0.0025 

which means that the likelihood to observe a relative risk of 6.6 (or even 

larger) by chance alone is 0.0025 (or 0.25%).   

(4) There was an interaction between urinary track infection and hazardous 

drinking: Mothers who suffered from a urinary track infection and who 

drank alcohol at an hazardous rate were 7.0 times more likely to give birth 

to a child with low birth weight for gestational age compared to mothers 

who had no urinary track infection OR had no hazardous drinking habits. 

We can be 95% confident that the true relative risk is between 1.01 and 

46.6. The result is statistically significant, as the 95% confidence interval of 

the relative risk did not include 1. The p-value again corroborates this 

observation and the interpretation follows those listed above. 

 

Please note the “combined” effect of two or more characteristics on the outcome is 

called interaction if it differs from the “sum” of the independent effects. Interactions 

can be amplifying (synergism) or reversing (antagonism). We talk about synergism if 

the simultaneous effect of two or more variables on the outcome exceeds the “sum” 

of the single effects. In the health sciences, synergism is often a biologic response to 

the simultaneous exposure to two or more agents that exceeds the combined action 

of the agents when acting independently. On the other hand, antagonism is the 

antithesis of synergism, and refers to the situation when the simultaneous effect of 

variables on the outcome is less than the “sum” of the individual effects.  

The logistic model is a multiplicative model: That is, for example, mothers who 

were active smokers and had pregnancy induced hypertension were 3.7 x 6.6 = 

24.4 times more likely to give birth to a child with low birth weight for gestational 

age compared to mothers who did not smoke and had no pregnancy induced 

hypertension. 

Please note that sample sizes are very informative in tables presenting the results 

of multivariate models. In Table 4 for instance, the small sample sizes for mothers 

with pregnancy induced hypertension and both hazardous drinking and urinary 

tract infections explain the large confidence intervals for those results. 
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Summary  
 Statistics are widely used in the health sciences because they provide us 

with:  

(1) numbers - an unambiguous language understood by everybody worldwide 

in the same way; and  

(2) tools to measure the uncertainty (that is the random error) present when 

inferring from a sample to the wider target population. 

 The correct choice of an appropriate statistical method to present and analyse 

the data is dependent on the type(s) of the variable(s) involved. The main 

differentiation is between categorical and numerical data. 

 Descriptive statistics for categorical variables usually simply describe the 

frequency of each category in percentages. Numerical variables are 

summarised using a measure of central tendency together with a measure of 

dispersion. Mean and standard deviation are used when the distribution of the 

numerical data is convex and symmetrical. If the distribution of numerical data 

is convex but skewed or there are too few observations to assess the 

distribution, then median and inter-quartiles are used for descriptive 

purposes. 

 Inferential statistics allow us to assess the random error involved when 

generalising from a sample to the target population. 

 A 95% confidence interval of a parameter, such as a mean or relative risk, 

implies that we are 95% confident that the true yet unknown parameter in the 

target population lies within this interval. 

 If the sample size is increased while everything else remains unchanged, the 

width of a confidence interval decreases, that is, the precision of the 

statement improves. 

 A statistical test is a decision making tool. It is used to confirm or reject a 

research hypothesis. A statistical test judges how likely it is that an observed 

difference between groups, or an association between characteristics, is due 

to random error (chance) alone. A statistical test is based on data from a 

sample, but delivers inferences about the target population. 

 The result of a statistical hypothesis test is called a “p-value”. The p-value 

gives the probability that the observed difference or an even larger difference 

is attributable to chance alone, given that in the target population there is 

really no difference. A p-value below 0.05 is considered as statistically 

significant. Statistical significance does not necessarily imply clinical 

relevance! 

 During the conduct of a statistical test two types of errors can occur: (1) Alpha 

error (α; type I error) and (2) Beta error (ß; type II error). Type I error occurs if 

a statistical test falsely identifies a difference between groups as significant 

(but in reality there is no difference in the target population). Type II error 

occurs when a test fails to identify a difference as significant when the 

difference exists in the target population. Alpha error is measured by the 

statistical test via the p-value. Beta error can only be controlled by a pre-

defined quantified research hypothesis and a corresponding appropriate 

sample size calculation. 

 The choice of the correct statistical test group for a specific bivariate (two 

variables) test situation is dependent on the type(s) of the two variables 
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involved. To come to an unambiguous decision for a specific test procedure, 

more detailed test-group specific differentiations are necessary. 

 For many study situations bivariate statistical tests are insufficient because 

several study factors are assessed simultaneously and / or because potential 

confounding is involved in the analysis.  

 The choice of an appropriate multivariable model is primarily determined by 

the type of the outcome variable. 
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