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Preface

This  book is  a  first  attempt  at  non-intimidating  teaching material  for  an
introductory course in biostatistics for students in low and middle income
countries with limited access to MOOCs and other material on the internet.
The emphasis is on basic concepts  that are needed to understand results
sections  of  medical  publications.   Examples  are  taken from open source
journals which students can access. The focus is on problems that confront
many developing nations: malaria, HIV, low birth weight infants. The book
includes output from statistical software packages but, at present, is not tied
to any software product that needs to be downloaded.  

I am grateful for any corrections, suggestions, or comments that readers may
have.  Future  versions will  be downloadable under a  Creative Commons
license from www.norusis.com.

I am grateful to Dr. Richard Heller for encouragement and comments and to
students and tutors at People's  Open Access Education Initiative: Peoples-
uni, www.peoples-uni.org, for corrections and suggestions.

Marija J. Norušis
marija@norusis.com
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1 Summarizing and
Displaying Data

• What types of graphical displays are useful for summarizing data?

• What are levels of measurement?

• What summary statistics describe central tendency? Dispersion?

• What is a standard score?

Whether you're presenting the results of  a complicated international drug
trial  or  gathering  data  for  your  own  clinic  or  hospital,  you  have  to
summarize your observations.  You know you can't  just list ages,  blood
pressures, or number of malaria nets for everyone  in the study and leave it
to the readers and reviewers to draw their own conclusions.  You have to
select  appropriate  charts,  tables  and  statistical  measures  to  convey  the
information that is important.  

There's no single best way to summarize and display data. The best way
depends on the properties of the data and of the statistical measures, on your
audience and on your personal tastes in charts and graphs. Charts and graphs
that  display  only  one  or  two  variables  are  usually  not  too  difficult  to
understand, while those that attempt to portray complex relationships, such
as a map that shows the distribution and severity of dengue in different age
groups over time may require quite a bit of effort to decipher. 
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Always remember that the purpose of visual displays is to make it easier for
the audience to understand the results.  If  you're making the charts, even if
you have software which can produce incredibly complicated displays, don't
put more information on a chart than the human mind can absorb without
overheating. Some published charts are impossible to understand without the
author sitting next to you. (And it's possible that the author has relegated
chart  making  to  someone  else  and  is  embarrassed  to  admit  that  he/she
doesn't quite understand it either.)

When calculating summary measures  make sure  they are  appropriate  for
your data.  The widespread availability of  statistical  software makes it  so
easy with a couple of clicks of the mouse to calculate all kinds of statistics,
whether they make sense or not.  (In this  chapter "statistic" refers to any
number  calculated  from  your  data  values.)   Don't  calculate  an  average
religion or ethnicity!

Scales of Measurement
When  you  conduct  a  study  you  typically  collect  multiple  pieces  of
information, called variables, for each person  or case. For example you may
record height, weight, gender, and admitting hospital for a group of  patients.
Each patient has a value for each variable. If Faramola is 60 cm tall, 60 cm.
is the value of the height variable. If you are using software to analyze your
data you'll have to enter the values of the variables for all of the cases into
what's called a data file.

How you assign values or symbols to what you are measuring is called the
scale of measurement. Variables can be measured in different ways. Height
can have many values, while gender is restricted to two values. Heights can
be ordered from smallest to largest, while admitting hospital is just a name
and can't be ordered based on the name alone. Variables are often classified
into four categories based on how they are measured:
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• Nominal variables  have values that  cannot be ordered in any
meaningful way. Country of birth, name of drug, and color of
hair are all examples of nominal variables. In a data file cases are
assigned the same symbol if  they have the same value of  the
attribute. The symbol doesn't mean anything. 

• Ordinal  variables  have  values  that  can  be  arranged  in  some
sensible way, such as worst to best, but the distance between the
coded values doesn't mean anything. If you rank your health on a
scale  from  1  (poor)  to  10  (excellent),  the  distance  between
adjacent ratings doesn't have a clear meaning. A person with a
rating of 10 is not twice as healthy as a person with a rating of 5,
nor is the change in health from 5 to 6 the same as the change in
health from 1 to 2.  All  you can say is that  the person with a
rating of 10 considers himself healthier than the person with a
rating of 5. 

• Ratio variables  have values that can be ordered and the actual
distance between values is interpretable. The distance between 60
cm and 62 cm is the same as the distance between 40 cm and 42
cm.  Ratio  variables  also  have  an  absolute  0  so  that  you  can
compute meaningful  ratios between values.  For example,  a  20
year old person is twice as old as a 10 year old person. A variable
that has meaningful distances between values but does not have
an  absolute  zero  point  is  said  to  be  measured  on  an  interval
scale. Temperature is the usual example of an interval value since
a 40 degree day cannot be said to be twice as hot as a 20 degree
day, (unless temperatures are measured on the Kelvin scale which
does have an absolute zero).

Before you start analyzing data you must consider the scale of measurement
for the variables of interest. A statistical analysis which is appropriate for a
variable like weight may be totally inappropriate for a variable like region of
the country. Often numerical codes are chosen to represent nominal variables
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in a data file. For example the value of 1 may correspond to Africa, 2 to
South East Asia, 3 to Europe and so on. That does not change the level of
measurement of the variable. It is still a nominal variable. This is important
if you are analyzing data files with a computer since statistical software will
often spit out answers without any regard to whether the result makes sense.

Variables can also be classified based on the number of  values they can
have.  Discrete or  categorical  variables,  such as stage of  a  disease,  drug
administered, or number of Insecticide Treated Nets (ITNs) in a household,
have  a  limited  number  of  distinct  values.  Continuous  variables  such  as
blood pressure and weight can have many possible values. Ratio variables
can be either discrete (family size) or continuous (height, weight). Ordinal
variables (job satisfaction, health status) are usually discrete. 

Frequency Table

If  a  variable  has  a  small  number  of  possible  values  a  straightforward
summary method is simply to count the number of times each value occurs.
This is called a  frequency table. For example, consider  Figure 1.1 which
shows the number of insecticide-treated bed nets (ITNs) per household in a
village in south Ethiopia as reported by Loha et al. (2013). The symbol N or
n is usually used for sample sizes in tables or charts.
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From the table you see that 241 households did not have any ITNs. That's
19.9%  of  the  1212  households  in  the  study  (241/1212  times  100).  A
percentage tells you what part of the whole a particular piece is. The last
row of the table tells you what percent of the households had any insecticide
treated bed nets. That is, the percent that had 1, 2, 3 or 4 bed nets. A little
over 80% of households had at least one ITN.

For variables where it makes sense to combine adjacent values, like age or
income, you can make a frequency table where each row corresponds to a
range of values. This is sometimes called a  grouped frequency table.  For
example for age, you can set up categories like less than 5 years old, 5-11 ,
12-18  years  and  older  than  18,  and  count  the  number  of  cases  in  each
category. Make sure that the categories don't overlap and that all possible
values are included. 
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If you're the one actually analyzing the data instead of just reading someone
else's results, a frequency table can reveal problems with your data that need
to be corrected before you perform any additional analyses. For example if
you find unlikely or impossible values in your table, such as 30 ITNs, you
know that value should be checked and corrected. The person recording or
entering the information probably made a mistake. If you don't correct errors
in your data at the very beginning everything else you do may be incorrect.
Check your ingredients before you start cooking!

Pie charts
The information in a table is often easier to understand if you turn it into a
visual display. Figure 1.2 is a pie chart for the ITN table. ( A pie is a round
cake.) There is a slice for each of the first five rows in the table. The size of
the slice represents the counts or percentages for each value in the table.
Many statisticians advise against the use of pie charts since humans aren't
very good at visually comparing areas. That doesn't stop their use and you'll
encounter pie charts in many publications and reports.
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Figure 1.2: Pie Chart of Number of ITNs
Owned by Household at First Census



  
Pie charts are not restricted to count data. They can be used whenever you
subdivide a total into constituent parts. Figure  1.3 shows the total money
spent on malaria control in India and Laos subdivided by type of activity
(World Malaria Report, 2012). 

Figure 1.3: Expenditures by Intervention India
(left) and Laos

No doubt the designers of the report were concerned about the report being
visually attractive so they selected shades of  the same color  to represent
different interventions. Unfortunately that makes it difficult for the reader to
distinguish between interventions represented by similar  shades.  You can
tell, however, that India and Laos use their funds very differently. ITNs and
diagnostics account for almost half of India's expenditures and roughly an
eighth of Laos' expenditures. Laos reports that it spends almost half of its
funds on management and other costs. Whenever data is self reported by
individuals or agencies you have to be concerned about whether instructions
and definitions are uniformly applied. 
 
One important determinant of spending allocation is the incidence of malaria
in a country. Look at the Epidemiological Profiles for India and Laos, shown
in Figure 1.4 and  Figure 1.5. A little more than a third of Laos' population
(36%) lives in high transmission areas as compared to 22% for India. In
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India 11% of the population is  estimated to live in malaria  free regions,
compared  to  41%  for  Laos.  (The  epidemiological  profiles  are  grouped
frequency tables where rows correspond to ranges of malaria incidence.)

Figure 1.4: Epidemiological Profile for India

Figure 1.5: Epidemiological Profile for Laos

Exercise: Make Pie Charts of the epidemiological profiles for Laos and India . Combine
the two epidemiological profiles into a single frequency table. Make sure to recalculate
the percentages.

8



Bar charts
In a pie chart, the size of a slice depends on the number of cases or some
other statistic, like the sum, for each category. In a bar chart the height of a
bar  depends  on  that  statistic.  Psychologists  believe  that  humans  process
height better than area, so you'll often encounter bar charts when reading
journals. Another advantage of bar charts is that it's easy to show multiple
bars corresponding to various groupings of the data on the same chart. Bar
charts come in many flavors as you will see. 

In a bar chart you have as many bars as you have slices in a pie chart. Figure
1.6 is a bar chart of the data shown in Figure 1.1. The number of ITNs in a
household is on the horizontal axis and the percentage of households is on
the vertical axis. The pie chart and the bar chart are different visual displays
of the same information. 
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Figure 1.6: Bar Chart of  Number of
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Whenever you look at a chart, pay attention to the values on the axis which
has the scale. That is, the axis that shows the percent or the count. If the
scale does not start at 0 differences between bars are artificially magnified.
You can make the difference between 20 and 22 appear very large if you
start the scale axis at 19. 

Histograms

If  you  have  an  ordered  variable  with  many  values  you  can  display  its
distribution  in  a  histogram.  A  histogram is  like  a  bar  chart  except  that
adjacent  values  are  combined  into  a  single  bar  and  distances  on  the
horizontal axis are measured on a scale. The height of a bar depends on the
number of cases that fall in that interval.  The horizontal axis in a bar chart
isn't ordered or scaled. For example, if you didn't have any cases with three
nets, the bar for two nets would be next to the bar for four nets. You wouldn't
see a space indicating that the three nets were never observed. In contrast, a
histogram leaves blank space when there are no cases for a range of values.

Figure 1.7 shows a histogram of ages for a national survey of adults. Each
bar represents a five year interval, instead of single years. If you didn't have
any cases in a particular age group, say 40-45, unlike in a bar chart, you
would see a gap corresponding to the 0 frequency. You see that the highest
peak is for people in their fifties. Since this was a study of adults, the lowest
acceptable age was 18. There was no upper limit on age. 
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A histogram shows detailed information about the distribution of a variable.
You can tell if a distribution has a single peak or multiple peaks, whether

there are gaps in the data, and whether there are outliers--values that are far
removed  from  the  rest.  You  can  also  tell  whether  the  distribution  is
approximately symmetric, meaning that the two sides are mirror images of
each other. If a distribution has one tail that extends farther from the center
than the other the distribution is  skewed. A distribution with a tail toward
larger values is said to be skewed to the right, or have a positive skew; a
distribution  with  a  tail  toward  smaller  values  is  skewed  to  the  left,  or
negatively skewed. Income and age are variables that are often positively
skewed. That's because there is a strict limit on how small the values can be
but the upper limit is not restricted. Figure 1.8 shows what histograms look
like for data with negative, positive and no skew.                        
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Figure 1.7: Histogram of Age



Distributions of variables are important for statistical testing of hypotheses
and they are discussed in more detail in the chapter on Hypothesis Testing.

Grouped Bar Charts

Like pie charts, bar charts are used to display all kinds of summary measures
besides counts. Figure 1.9 is a bar chart of ITN use in five countries over a
three year period. For each year and country there are two bars, one for the
proportion  of  the  population  with  access  to  an  ITN,   the  other  for  the
proportion reporting sleeping under a net .
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Figure 1.9: Access and Use of Insecticide Treated Nets

You see that for each country the percent of the population with access to
ITNs has increased with time as has the proportion sleeping under a net.
Surveys show that for each year Rwanda has the greatest access and use. 

Stacked Bar Charts of Sums

Instead of having bars next to each other, you can stack them one on top of
another.  As  an  example,  consider  Figure  1.10 from  the  World  Malaria
Report. Each bar represents total domestic funding for malaria control for
one  of  the  WHO regions  in  a  year.  You see  that  about  400  million  US
Dollars  were  spent  for  domestic  funding  of  malaria  control  in  2005,
increasing to over 600 million USD by 2011. The total spent is subdivided
by region which is identified by the colors shown above the figure. Funding
has increased or stayed the same in all regions except Europe, where it has
decreased. In particular funding in South East Asia (SEAR) has increased
since 2009.
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Cumulative Bar Charts

You know that the number of malaria cases and deaths vary by country. You
can display the counts in a simple bar chart with each country corresponding
to  a  bar.  For  a  data  set  with  101 countries  that's  a  lot  of  bars!  A more
informative display is to sort the countries by the number of deaths/cases
and then to calculate the percentage of all malaria cases/ deaths that occur in
that  country  and  in  all  countries  with  a  larger  number  of  deaths.  You
cumulate the deaths across countries. That lets you identify the subset of
countries that account for the largest proportion of malaria deaths. 

Consider Figure 1.11. Nigeria has both the most malaria cases and the most
deaths (25% of the cases and 30% of the deaths) so it is the first bar in both
plots.  
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Figure 1.10: Funding for Malaria Control



Figure 1.11: Cumulative Proportion of Malaria Cases and Deaths

In the case plot (on the left) the bar for India is the percent of total cases due
to both Nigeria and India. The difference between the first two bars is the
percent  of  cases  for  India.  Each  bar  is  calculated  from the  sum of  that
country's deaths and the deaths of all countries with larger values. You see
that a small number of countries (with large populations) account for most of
the cases and deaths. Eight countries are responsible for 60% of the cases of
malaria; six countries are responsible for 60% of all malaria deaths.

Exercise:  Which countries account for 50% of the malaria deaths? Which for 50% of
the cases?

Line Charts
If a variable is ordered in some meaningful way, for example time, health
status, or malaria incidence, an alternative to a series of bar charts is a line
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chart. For example, instead of showing ten bars that show the percentage of
household using ITNs at 10 time points, you mark what would have been the
height of the bar with a single point and then connect the points with a line.
The horizontal scale doesn't have to have equal intervals but the categories
should be ordered.

Figure  1.12 is  a  plot  of  ITN use by time for  the 101 households  in  the
malaria  study.  The horizontal  axis  is  the  week of  study.  For  each week,
instead  of  a  bar,  you  place  a  point  that  shows  the  percentage  of  the
households that use ITNs. Then you connect the points with a straight line.
(It  would take a  lot of bars to show the same information!) If  you have
groups  you  can  use  different  symbols  for  each  group.  Figure  1.12 uses
different symbols for the group as a whole and for males and females. The
intervals on the horizontal  axis are equal,  since they are weeks,  but they
don't have to be. 
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Figure 1.12: Insecticide treated Bed Net Use by Gender



From the line chart in Figure 1.12 you see that something happened to cause
a  marked  increase  of  ITN  use.  In  fact,  at  week  48  ITNs  were  freely
distributed to the participants. This caused the ITN use fraction to increase
dramatically. The fraction was about 0.2 at week 47 and then skyrocketed to
over 0.6 at week 48. Both before and after the intervention women were
more likely to use nets than men. (Note that the vertical axis starts not at 0
but  at  0.1.  That  makes  the  differences  between  men and  women appear
larger on the plot than if the axis started at 0. )

Scatterplots

In a line chart each location on the horizontal axis has one point, or several
points if several groups are plotted on the same chart. For example, at week
10 you have a single value for the proportion of ITN use for males, another
value  for  females  and  then  one  for  both  combined.  You're  summing  or
averaging the values of a variable for each location on the horizontal axis.

In a scatterplot you have two variables for each observations and you plot
the values for each pair on the horizontal and vertical axis. Figure 1.13 is a
scatterplot of the proportion of the population sleeping under ITNs for rural
and urban areas as estimated from older and more recent surveys. For each
survey you have two values: the proportion sleeping under ITNs for rural
areas and the proportion sleeping under ITNs for urban areas. Those are the
values that are shown in Figure 1.13.
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Figure 1.13: Insecticide Treated Net Use In Urban and Rural Areas

Look at the rightmost point on the scatterplot. It corresponds to a survey
with a value of 70% for rural areas and a little more than 70% for urban
areas. The line that's drawn through the scatterplot is where points would fall
if  rural  and urban areas had exactly the same proportions sleeping under
ITNs. Surveys that found urban areas to have larger percentages of people
sleeping under the net than rural areas are above the line. Surveys in which
rural  areas  had  larger  percentages  than  urban  areas  are  below  the  line.
Regression  lines  which  are  used  to  summarize  the  data  points  on  a
scatterplot are discussed in great detail in the Chapter 6.
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Descriptive Statistics

Frequency tables, bar charts, scatterplots and histograms are essential first
steps in examining your data. From them you can see how often different
values  of  a  variable  occur.  Often,  however,  you  need  to  summarize  the
information further, especially if a variable has many distinct values. You
want to compute measures that describe the "typical" value as well as how
much the data spread out around this value. You want to answer questions
such as "what's the average number of ITNs in a household?" and "How
much spread is there in the number of ITNs owned?" Sometimes there is no
good answer  to  these  questions.  For  example,  if  your  data  showed only
households with no ITNs or 3 ITNs, trying to summarize the data by pooling
the two groups would lead to misleading results. 

You  should  never  calculate  summary  descriptive  statistics  without  first
examining  the  distribution  of  the  data  values  using  tables  and  charts.
Summary statistics  can hide potentially  serious problems with your  data.
Unless  you  examine  all  of  the  values  you  won't  detect  errors  in  data
recording or entry, errors in setting up a data file or data values that may
have been corrupted by your software.

Measures of Central Tendency

The arithmetic average, median and mode are the most frequently reported
measures of "typical." The  mode is the value that occurs most frequently.
From  Figure 1.1 you see that the largest number of households (463) had
two ITNs, so that is the mode. It's not difficult to see why the mode alone is
not a very good summary measure. If you know that the mode is two ITNs
it's possible that almost all households have two nets. It's also possible that
605  households  don't  have  any  nets  and  607  have  two  nets.  The  mode
doesn't  tell  you anything about  the  distribution of  the  values.  If  you are
reporting a mode make sure you also indicate the percent of cases in that
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category. You should say "The mode is 2, with 38.2% of households having
two ITNs."

For a variable measured on a nominal scale, like type of insecticide used, or
how the net was obtained, the mode is the only summary measure that you
can compute. For variables that have values that can be ordered you can use
this additional information for calculating a measure of central tendency. 

Median
The median makes better use of the data than the mode. The median is the
value that is in the middle when the data points are sorted from smallest to
largest. For example, if the ages of five people are 28, 29, 30, 31 and 32, the
median is 30 years, since it is the middle value. Half of the cases have values
greater than the median and half have values less than the median. If you
have an even number of cases there isn't  a single number in the middle,
instead there are two numbers. For example, if the values are 21, 28, 29, 30,
31 and 40, the middle values are 29 and 30. To calculate the median you add
up  the  two  middle  values  and  divide  by  2.  In  this  case  the  median  is
(29+30)/2 = 29.5. 

A shortcoming of the median as a summary measure is that it ignores much
of the available information. The median for 10, 15, 17, 19, and 20 is the
same as the median for 0, 0, 17, 100, 20000. The actual amount that values
fall above or below the median has no effect on the median. This can be an
advantage if you have one or more outlying values which are far removed
from the rest since they will have no effect on the median. 

Arithmetic Mean
The most commonly used measure of "typical" is the arithmetic mean, also
known as the average. The mean uses the actual values of all of the cases. To
compute the mean, add up the values of all of the cases and then divide by
the number of cases. 
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The arithmetic mean of the five values 28, 29, 30, 98 and 190 is

Mean=#28$29$30$98$190%
5

=75

One of the disadvantages of the arithmetic is that cases with values that are
very different from the rest can have a large effect on the mean, especially if
the sample sizes are small. If you observe 5 households with 0, 1, 1, 2 and
20 ITNs, the arithmetic mean is 4.8. That's not a very good indicator of the
typical number of nets in the households.

For a symmetric distribution the mean, median and mode are the same--the
value that corresponds to the peak. If you have a distribution with several
peaks, the sample mean may fall in between the peaks and not be at all a
good measure of typical.

To prevent cases with outlying values from distorting the mean, you can
calculate what's called a trimmed mean. A trimmed mean is calculated just
like the usual arithmetic mean, except that a designated percentages of cases
with the largest and smallest values are excluded from the calculation. This
makes the trimmed mean less sensitive to outlying values. The 5% trimmed
mean excludes 5% of largest values and the 5% of smallest values. It's based
on  the  90%  of  cases  in  the  middle.  The  trimmed  mean  provides  an
alternative  to  the  median  when  you  have  some  data  values  that  are  far
removed from the rest. (In your readings you may also encounter statistics
called  M-estimators which instead of discarding the largest  and smallest
sets of values give them less weight when calculating the mean.) 

Exercise: In the table that follows why do you think the authors report the median instead
of the mean for weeks of ITN use? How would you summarize the table?
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Measures of Variability
Measures of central tendency don't tell you anything about how much the
data values differ from each other. For example, the mean and median are
both 50 for these two sets of ages: 50, 50, 50, 50, 50 and 10, 20, 50, 80, 90.
However,  the distribution of  ages is  very different  between the two sets.
Measures of variability quantify the spread of observations. 
The range is the most straight forward measure of spread. It's the difference
between  the  largest  observed  value  (the  maximum)  and  the  smallest
observed value (the minimum). A large value for the range tells you that the
largest and smallest values differ substantially. It doesn't tell you anything
about how much the values in between vary. For the first set of ages, the
range is 0; for the second set the range is 90 – 10, or 80.

A better measure of variability is the interquartile range which is the range
when cases with the 25% largest and 25% smallest values are excluded. It's
the distance between the 75th and 25th percentile. Unlike the ordinary range,
the interquartile range is not easily affected by extreme values.
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Variance and Standard Deviation

The most commonly used measure of variability is the variance. It is based
on the squared distances between the values of the individual cases and the
mean. To calculate the squared distance between a value and the mean, just
subtract the mean from the value and then square the difference. (One reason
you must use the squared distance instead of the distance is that the sum of
distances around the mean is always 0.) To get the variance, sum up the
squared distances from the mean for all cases and divide the sum by the
number of cases minus 1.

For example, to calculate the variance of the five numbers 28, 29, 30, 98,
and 190, first find the mean. It is 75. The sample variance is then

If the variance is 0, all  of the cases have the same value. The larger the
variance, the more the values are spread out.  To obtain a measure in the
same units as the original data, you can take the square root of the variance
and obtain what’s known as the  standard deviation.  For this example the
standard deviation is 70.9.

The Coefficient of Variation

The  magnitude  of  the  standard  deviation  depends  on  the  units  used  to
measure a variable. For example, the standard deviation for age measured in
days  is  larger  than the  standard deviation of  the  same ages  measured in
years. (In fact, the standard deviation for age in days is 365.25 times the
standard deviation for  age in  years.)  Similarly,  a  variable  such as  yearly
salary will usually have a larger standard deviation than a variable such as
height in meters.
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The coefficient of variation compares the standard deviation to the mean. It
tells you what percent of the mean the standard deviation is. To compute the
coefficient of variation, just divide the standard deviation by the mean and
multiply by 100. (Take the absolute value of the mean if it is negative.) 

For example, if the age in days has a mean of 1500 days, and a standard
deviation of 200 days, the coefficient of variation is

Coefficient of Variation=(200 days/1500 days) x 100 =13.3%

The coefficient  of  variation will  be the same if  age is  recorded in  days,
months or years, provided it is recorded in the same detail. Since both the
mean and the standard deviation are in the same units,  the coefficient of
variation is unit free. 

The  coefficient  of  variation  allows  you  to  compare  the  variability  of
different variables. For example, you can compare whether systolic blood
pressures are more variable than diastolic blood pressures or whether the
number of children is more variable than the number of ITNs.

Summarizing the Insecticide Treated Net Data
Figure 1.14 shows descriptive statistics for the number of insecticide treated
nets in a household, as shown in  Figure 1.1. The number of households in
the study is 1212. When examining the results of any study always note how
many observational units (people, animals, schools) were initially enrolled in
the  study and how many appear  in  the  results.  There  are  many possible
reasons why observations are incomplete. Some are innocuous, like being
unable to read a number on a form, but others can seriously discredit the
results.  If  patients  find  a  treatment  unbearable  and  refuse  to  continue,
eliminating  them  from  the  study  will  make  the  results  impossible  to
interpret.  In  the  malaria  study  if  people  who  refuse  to  use  ITNs  didn't
continue in the study, it would make ITN use appear to increase even if there
is little change.
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The average number of nets is 1.35. Half of the households have one net or
fewer. Thirty eight percent of households have two nets, the most frequently
occurring number. The range is 4, the difference between the smallest value
(0) and the largest value (4). The variance is 0.81, so the standard deviation
is 0.90, its square root. The standard deviation is 67% of the mean, so that is
the coefficient of variation.

Calculating the Summary Statistics

Since you have only 5 possible values for the number of insecticide treated
nets, calculating the descriptive statistics is particularly easy. The sum of the
number of nets is

sum=  (241 x 0)+(414 x 1) + (463 x 2) + (85 x 3) + (9 x 4) = 1631

mean = 1631
1212

=1.35

Similarly the variance is

s2=
#241 #0−1.35%2$414#1−1.35%2$463#2−1.35%2$85 #3−1.35%2$9#4−1.35%2%

1211
= 0.81
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Figure 1.14: Summary Statistics of ITNs Owned for 1212 Households



Exercise: You saw that 20% of all household do not have any ITNs. Above they are
included  in  the  computation  of  the  statistics  with  a  value  of  0.  It  might  be  more
informative  to  restrict  the  computation  of  the  summary  statistics  to  households  that
actually  have  nets  and  to  report  the  number  of  households  without  nets  separately.
Recalculate the descriptive statistics for households that actually had ITNs. Compare the
two sets of statistics. Which do you think is a better summary? In their results section the
authors of the paper say that the average number of ITNs is 1.68. Do you recognize this
number? Do you think the authors  should have mentioned that  the  average does  not
include households that don't have any nets?

Percentiles
The median splits  a  sample  into two equal  parts  based on the values  of
variable. You can compute values that split the sample in other ways as well.
For example, you can find the value below which 25% of the observations
fall,  or  the  value below which 90 percent  of  the  observations  fall.  Such
values are called percentiles, since they tell you the percentage of cases with
values below them. Twenty five percent of cases have values smaller than
the 25th percentile, so 75% of the cases have values larger than the 25th
percentile. 

Many standardized tests give you percentile rankings as well as scores. That
lets you determine where you stand in the pool of test-takers. A score at the
90th percentile is great, since 90% of people scored worse than you did; only
10% scored better. A percentile of 15 is nothing to brag about, since 85% of
people scored better than you did. In contrast, when studying malaria cases
and deaths, having low percentile values when compared to other countries
is good since that means you have fewer cases and deaths.

Together, the 25th, 50th, and 75th percentiles are known as quartiles, since
they split the sample into four groups with approximately equal numbers of
cases. Values that divide the sample into three groups are called tertiles; into
five groups, quintiles and into ten groups, deciles.

Figure 1.15 shows domestic and international per capita disbursements when
countries are subdivided into five equal sized groups,  quintiles,  based on
their observed malaria mortality. Countries with highest malaria mortality
rates have the largest  external disbursements.  As mortality rates decrease

26



domestic spending increases.

Exercise: Based on  Figure 1.11,  which countries  fall  into the top quarter  of  malaria
cases? malaria deaths? Can you determine all of the countries that fall into the bottom
quarter? (There are 101 countries total.)

Figure 1.16 shows World Health Organization estimated percentiles of body
mass index for girls 5 to 19 years of age. (The body mass index is calculated
as  the  weight  in  kilograms  divided  by  the  square  of  the  height  in
centimeters.) Since values are shown by month of age, as you would expect
the percentiles are constant over the six month interval shown. Half of all
girls between 5 and 19 are estimated to have a BMI less than 15.2 and half
greater than 15.2. Only 3 percent of girls have BMIs greater than 18.6 or less
than 12.9. Having normative values is important for evaluating risk factors
for individuals.
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Figure 1.15: Spending by Source for Quintiles of Malaria Deaths



Figure 1.16: Percentiles of BMI for Girls 5-19 years of age

Box Plots: Displaying Percentiles

When you use bar charts to compare means of groups, you ignore important
information about the data. You can't tell anything about the distribution of
data values by looking at just the means. If you present histograms for each
group you suffer from the problem of too much information. It's difficult to
compare a bunch of histograms.

A box plot is a display that conveys much more information than a bar chart
but less than the individual histograms. It is particularly useful when you
want  to  compare  the  distributions  of  several  groups.  A  box  plot
simultaneously displays the median, the interquartile range, and the smallest
and largest values for each group.  Figure 1.17 is a basic annotated box plot.
The length of  the box indicates  the variability of  the observations.  Long
boxes  have  data  values  with  more  spread  than  short  boxes.  The  lower
boundary of each box is the 25th percentile, the upper boundary the 75th
percentile. Half of the data values are within the lower and upper boundaries
of  the  box.  The  lines  extending  from  the  ends  of  the  box  are  called
“whiskers” and the plot is often called a box and whisker plot. Usually in a
box plot the whiskers extend to the smallest observed data values that aren't
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outliers, where an outlier is a point more than 1.5 box lengths from the edge
of  the  box.  (Sometimes  box  plots  are  displayed  horizontally  rather  than
vertically.)

Figure 1.17: Schematic Box Plot

From a box plot you can tell about the shape of a distribution. If the median
line is close to the center of the box, and the distribution of data values has a
single peak and is continuous, the distribution of the variable is more or less
symmetric. If the median is closer to the bottom of the box than to the top,
the data are positively skewed. This means that it has a tail toward larger
values. If the median is closer to the top of the box than to the bottom, the
opposite is true: the distribution is negatively skewed. The length of the tail
is shown by the whiskers. 

Figure 1.18 is from the the same study as the frequency table. The author is
describing the fraction of people who slept under an insecticide treated nets
before and after free ITNs were distributed. There are separate boxes for age
and sex groups. 
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The white boxes represent the fraction of people reporting ITN use the prior
night before ITN distribution, the green, the fraction after the distribution.
Surveys  were  conducted  weekly  so  the  boxes  are  based  on  the  fraction
reporting  use  each  week.  For  every  group  net  use  increased  after  the
distribution, so all of the green boxes are above their corresponding white
boxes. Look at the last two boxes which represent all cases. The median ITN
fraction before distribution was around 0.18. Half of the time fewer than
18% of all individuals slept under a net. After the net distribution, about
60% of the time people slept under a net. That's a big improvement. 

The bottom of a box is at the 25th percentile, the top is at the 75th percentile.
At the beginning of the study, seventy-five percent of the time between 17%
and 22% of people reported sleeping under a net. After the net distribution,
the interquartile range is from about 58% to 64%, indicating that half of the
time between 58% and 64% of people slept under a net. The lengths of the
before  and  after  boxes  are  similar,  because  the  interquartile  range  didn't
change much. 
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Figure 1.18: Insecticide Treated Net Use Fraction by Gender and Age



The open circles and stars represent outlying cases. They are weeks in which
net  were used much more or much less than the others.  The open circle
weeks are not as far from the ends of the whiskers as are the star cases. Most
boxes have lines (medians) which are not in the middle but closer to the
bottom. That means that the distribution has a tail to the right. Frequent net
use is reported more often than infrequent use.

The collected box plots are a good summary of the results. You see that for
all age groups ITN use increased after the distribution. You can easily look
for differences that may be attributable to age and sex.

Standard Scores

The mean often serves as a convenient reference point to which individual
observations are compared. Whenever you receive an examination back, the
first question you ask is, How does my performance compare with the rest of
the class? An initially dismal-looking score of 65% may turn stellar if that’s
the highest grade. Similarly, a usually respectable score of 80 loses its appeal
if it places you in the bottom quarter of the class. If the instructor just tells
you the mean score for the class, you can only tell if your score is less than,
equal  to,  or  greater than the mean.  You can’t  say how far it  is  from the
average unless you also know the standard deviation.

For example, if the average score is 70 and the standard deviation is 5, a
score of 80 is quite a bit better than average. It is two standard deviations
above the mean. If the standard deviation is 15, the same score is not very
remarkable. It is less than one standard deviation above the mean. You can
determine the position of a case in the distribution of observed values by
calculating what’s known as a standard score, or z- score. (When variables
have normal distributions the z -score is particularly useful since it allows
you to position the case exactly in the distribution. That's a topic for chapter
3: The Normal Distribution.)
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To calculate the standard score, first find the difference between the case’s
value and the mean and then divide this difference by the standard deviation:

standard score= #value−mean%
# standard deviation%

A standard score tells you how many standard deviation units a case is above
or below the mean. If a case’s standard score is 0, the value for that case is
equal to the mean. If the standard score is 1, the value for the case is one
standard deviation above the mean. If the standard score is –1, the value for
the  case  is  one  standard  deviation  below the  mean.  (For  many types  of
distributions, including the normal distribution discussed in chapter 3, most
of the observed values fall within plus or minus two standard deviations of
the mean.) The mean of the standard scores for a variable is always 0, and
their standard deviation is 1.

Standard scores allow you to compare relative values of several different
variables for a case. For example, if a person has a standard score of 2 for
income and a standard score of –1 for education, you know that the person
has a larger income than most and somewhat fewer years of education. You
can't meaningfully compare the original values, since the variables all have
different  units  of  measurement,  different  means,  and  different  standard
deviations.

Figure 1.19, distributed by the World Health Organization, plots z-scores for
the weight of girls from birth to 6 months. The chart allows you to determine
how a particular girl's weight compares to that of other girls of the same age.
For each age the average weight and standard deviation of a large number of
girls was obtained. Then for each age, the z-score for a particular weight is
calculated by subtracting the mean weight for that age from the weight of
interest  and  dividing  by  the  standard  deviation.  (WHO actually  uses  the
median instead of  the mean for  calculating the z-score.  For a  symmetric
distribution that the mean and median are the same.) 
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Figure 1.19: Z- scores for Weight of Girls Birth to 6 Months

The green curve shows the average weight at each age. It corresponds to z-
scores of 0. Girls whose weights are close to the green curve value for their
age have average weights for their age.  A girl whose weight is above the
mean for her age will have a positive z-score. The heavier the girl the larger
the z-score. If a girl weighs less than average she will have a negative z-
score. The red curves show weights for z-scores of +2 and -2. You expect
roughly 68% of girls to have z-scores between +1 and -1. Approximately
95% of girls to have z-scores between -2 and +2. Girls with z-scores larger
than 2 in absolute value are quite atypical and may need to be evaluated. 
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Summary
In this chapter you worked with only the most basic of charts and summary
statistics.  But don't  underestimate their importance. It  doesn't  matter how
complicated  or  simple  the  paper  you  are  reading  or  the  data  you  are
analyzing is,  careful  examination  of  the  data  values  and of  relationships
between variables is essential. Complex statistical procedures and tests will
never replace the insights you gain from basic analyses.
In the next chapter you'll learn how to draw conclusions about a population
based on a sample. That's where the mysterious p-value you may have heard
about makes an appearance.
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2 Evaluating Results
from Samples

• What is a population?

• What is a random sample?

• Is a sample a miniature of the population?

• What is the sampling distribution of a statistic?

• What factors determine how much sample means vary ?

• What's the standard error of the mean?

• What's an observed significance level?

In  the  previous  chapter  you  used  charts  and  descriptive  statistics  to
summarize the observed data. Your only concern was how to describe the
observations at hand. It's straightforward to say that at the beginning of a
study people on average reported that they slept under insecticide treated
nets (ITNs) 30% of the time and when free nets were distributed they said on
average that they slept under ITNs 60% of the time. Unless there were errors
recording or entering the data you can speak confidently about what you
actually  observed.  But  is  that  really  enough?  Do  you  want  to  draw
conclusions only about the participants of your study, about the people you
actually  observed?  That's  unlikely.  What  you  probably  want  to  know is
whether distributing free nets in malarial areas is an effective strategy for
increasing ITN use for all people in malarial areas in your district, country,
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or region. You want to draw conclusions about more people than those that
you actually observed. That's the topic of this chapter and the focus of much
of the field of inferential statistics. 

What is a Population?

In common usage the word population refers to all people, animals, plants,
or  anything  else  of  interest,  that  inhabit  a  particular  area.  For  example,
there's the human population of Nigeria, or the population of wildebeest in
the  Maasai  Mara.  (Good  luck  counting  them!)  In  statistics  the  term
population refers to the totality of people or objects about which you want
to draw conclusions. Before starting a study, you must carefully define your
population. For example, if you want to study death rates from a particular
disease in hospitals, your population might be the patients in a particular
hospital, or all hospitals in the region, or perhaps all hospitals in a country or
even the world.

Even when the population of interest is well defined you may not be able to
study  it.  If  you  want  to  test  the  effectiveness  of  a  new  supplement  for
malnourished children,  you would ideally like to draw conclusions about
how well it works for all malnourished children. Unfortunately, the children
whose parents agree to administer the supplement may differ in important
ways from the population of all malnourished children. They may be sicker,
poorer, or have parents who take better care of them. You can only study the
population  of  children  with  willing  parents  and  your  conclusions  are
necessarily restricted to them. 

What is a Sample?

The persons actually included in your study are called the sample. There are
many different samples that can be selected from the same population. Think
of all the ways you can select 100 school children from a town. You can
include the first 100 from an alphabetical listing of student names. You can
ask principals to select a certain number of students from their school. Or
you can ask children to volunteer to participate. Common sense tells you that
there are serious problems with all  of these samples. An alphabetical list
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may results in too many students from a particular ethnic group with similar
surnames.  Principals  may  suggest  students  who  they  deem  exemplary.
Students who volunteer may be healthier than those who don't.

The term statistic is used to characterize results from a sample. The sample
mean and variance are both examples of statistics. The term  parameter is
used to describe the characteristics of a population. For example, the percent
of people using nets in your sample is a statistic, the percent of people using
nets  in  the  population  is  called  a  parameter.  Parameters  are  usually
designated with Greek symbols. For example the mean of a population is
called called μ  (mu), while the mean of a sample is called  'X (X bar).
Similarly  the  standard  deviation  of  the  population  is  called ( (sigma),
while the value for a sample is called  s. Population values are usually not
known but  must  be estimated from samples.  If  you knew the population
values  there  would  be  little  reason  for  you  to  perform  experiments  or
conduct surveys. 

Selecting a Sample

So what is a good sample?  Obviously you want it to be selected from the
entire population of interest. If you’re studying the population of Tanzanian
adults, you want your sample to include people of all ages from all areas of
Tanzania. You want to make sure that you are not excluding any particular
types of people and that all people have the same chance of being selected.
(More  sophisticated  sampling  plans  allow  for  unequal  probabilities  of
selection but these probabilities must be known so they can be included in
the analysis of the data.) 

What you shouldn't do is select people that you think are “typical” of the
population.  Such  samples,  called  judgment samples,  are  fraught  with
problems,  since the criteria  for  inclusion depend on someone’s notion of
who should be selected. There’s no way to determine how well the sample
really  represents  the  population.  Different  people  will  select  different
samples from the same population based on their  preconceived notion of
what the population is really like. 
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Another bad sampling strategy is to select a convenience sample; a sample
that relies on people who are convenient to include. Interviewers who stand
in  marketplaces  waiting  to  question  people  are  pursuing  convenience
samples. Any warm body that is willing to answer questions is fair game for
the  sample.  Drawing  statistically  valid  conclusions  from  a  convenience
sample is impossible, since the people included are not representative of any
population except those willing to be interviewed at a particular location at a
particular time. A quota sample attempts to improve a convenience sample
by including a  certain  number of  people in  predesignated categories.  An
interviewer is told to get 40 “young” people, 50 “middle aged” people and
10 “old” people. That's still a bad sample since it depends on the whims of
the interviewer. 

Studies that rely on volunteers, people who offer to be part of your study, are
easy to do. That’s why they’re so common. However, it is well known that
volunteers can differ in important ways from people who don’t volunteer.
People who volunteer their opinions or agree to participate in studies are
often very different from those who don’t. They may be poorer or wealthier,
healthier or sicker or better educated than people who don't. Don't rely on
volunteer samples.

Surveys often pop up when you are using the internet. Your bank may ask
whether you are satisfied with its services or a book seller may want to know
what kind of books you read. Internet surveys combine the worst features of
volunteer  and  convenience  samples.  You  have  no  idea  who  is  really
answering the questions, why, or even how often. There's also the problem
that internet availability depends both on demographic characteristics of the
possible respondents and regional availability. It's not easy getting online in
some places. Beware of drawing conclusions from poorly designed internet-
based surveys.

Since all the above methods don't result in a “good” sample, it's natural to
ask “How should I select a sample?” The answer may appear strange at first.
The mechanism for  selecting a  sample should be chance.  Not  haphazard
chance, but carefully planned chance. Sounds like a contradiction, but it’s
not.  Planned  chance  means  that  you  have  a  method  to  ensure  that  each
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person in the population of interest has an equal probability of being selected
for the sample, and that all possible samples are equally likely. Observations
are selected independently so that one person's selection has no effect on the
selection of any other person. This is called a simple random sample. For
example, if you have a list of all student names in a district and want to
select a simple random sample of 100 students, you can assign each student
a random number which you obtain from a computer program that spits out
random numbers. (In the past, statistics textbooks used to include lists of
random digits!)  Then you can sort  the random numbers from smallest  to
largest,  and  select  the  100  students  with  the  largest  or  smallest  random
numbers. When samples are selected by chance, you actually know a lot
about  them  because  you  can  calculate  mathematically  the  likelihood  of
various types of samples. 
Statistical methods don't rely on magic. They rely on your following well-
established principles of study design. If you don't, you can still generate all
kinds  of  statistical  tests,  but  the  results  will  be  meaningless.  While  it's
possible to reanalyze good data if you've made a mistake in the analysis, a
poorly designed study is doomed.

Even if  you've carefully selected a random sample,  you won't  be able to
draw correct conclusions about the population if you introduce bias into your
survey or experiment by the way you ask questions, record answers, assign
individuals  to  treatment  groups,  or  evaluate  responses  to  treatments.  The
design of surveys and medical experiments is an extensive topic about which
much is written. Let's just take a quick look at some of the issues you should
be aware of.

Surveys and experiments, including clinical trials, are the two most common
sources of data. In a survey, you ask questions of people. In an experiment,
you actually do something and then observe the response. Good design as
well as selection of appropriate samples is essential for both of them. Unless
you are doing research on mice, even experiments usually require you to ask
questions of the study participants. You ask questions such as “Did you sleep
under an insecticide treated net last night?” and record the answer, together
with additional information about the respondent, such as their age, gender,
place of residence, family size, or whatever else you think is important. 
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Asking Questions
Asking  and  answering  questions  is  something  you’ve  done  since  your
toddler  days,  so  you  might  think  it’s  not  a  big  deal,  but  it  is  critically
important  in  all  types  of  research.  The way in  which  you ask  questions
affects the answers that you get. You don’t want to influence the response a
person gives. Asking a respondent whether they agree with the statement
that insecticide treated nets are the most important factor for the control of
malaria may elicit different responses than asking “What do you think is the
most  important  factor  for  malaria  control?”. You  must  structure  the
question in such a way that it does not suggest an answer. The interviewer
should always appear nonjudgmental, making sure the respondent doesn’t
try to give answers designed to please the interviewer.
Eliciting even simple information requires thought. For example, “How old
are you?” is an unimaginative question that you’ve been asked many times.
You may recall that you haven’t always answered it truthfully. When you
were 12 years old, you may have promoted yourself to the more glamorous
teenage years. When you reach middle age, you may want to turn back the
clock.  Or  someday,  you  simply  may  not  remember  the  magic  number
anymore. Does that mean that you shouldn’t ask about age in a survey? Of
course not. It means that you have to think about the best, most practical
way to obtain reliable information about age. Asking to see a birth certificate
is one way of obtaining accurate ages, but it’s obviously not a realistic tactic
for most surveys. Asking people to give their birth date as well as their age
is a  better  strategy.  People are much less likely to manipulate their  birth
dates than their ages, since a birth date doesn’t change annually, and it’s
work to calculate a birth year to match a desired age.
Although determining age has its problems, they are fairly minor compared
to the difficulties encountered in getting information about sensitive topics
such  as  drug  use  or  criminal  records.  Even  obtaining  information  about
routine  activities,  such  as  time  spent  sleeping,  poses  challenges.  Skilled
researchers devote a lot of effort to designing the survey questionnaire. To
minimize possible problems an actual questionnaire is often pretested on a
random sample of people from the population to which a survey will  be
administered.
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Exercise: In the Insecticide-Treated Net study, the experimenters weekly asked people
whether they slept under a net the previous night. For each household they chose the
same day of the week to ask the question. For example, for a particular household they
would always conduct the interview on a Tuesday. Do you see any problems with this
strategy?

Missing People and Missing Answers

You may have devised an excellent method for selecting a random sample of
people to include in your study. It's unfortunate that not all people whom you
want to include will agree to answer all of your questions or participate in
your clinical trial. Your first response might be to ignore the uncooperative
people and just replace them with more agreeable ones. If people who refuse
to  be  part  of  your  survey  or  experiment  are  different  from people  who
participate (and you can't possibly be certain that they aren't), the results you
draw based on cooperative people may not be true for the uncooperative
people. That's potentially deadly for reaching conclusions about the entire
population of interest. 

If you encounter people who just refuse to answer certain questions, you can
determine how people  who answered a  question differ  from people  who
don't. For example, if you find that older people are less likely to answer
questions about ITN use than younger people and that older people are less
likely to use ITNs, you'll have to report results separately for the groups.
What you should not do is ignore missing answers, since if they are not
missing at random they can seriously affect your conclusions. (Answers are
said to be missing at random if cases with missing values are otherwise no
different from cases without missing values. It's as if someone went through
a data file and randomly deleted some answers.)

Designing Experiments
Unlike a survey, an experiment involves actually doing something to people,
animals,  or  objects.  Instead  of  asking  people  whether  they  think  that
medicines  that  reduce cholesterol  are  effective for  decreasing the  risk of
heart disease, you give them the medicine and observe the incidence of heart
disease.  Sometimes  you  study  the  same  subject  before  and  after  an
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experimental treatment and determine if there has been a change. Or you
might take several groups of people, do something different to each of the
groups, and then compare the results.

Experimentation on people and animals poses ethical questions that deserve
careful  thought.  Human  experimentation  requires  informed  consent  from
participants. Risks must be carefully and exhaustively detailed. Institutions
have committees  that  regulate  experiments  involving humans or  animals,
and some governments, such as in the US and Europe, take strong measures
when institutions do not comply with guidelines for human experimentation.

In experiments as well as surveys, the subjects must come from the popula-
tion that you’re interested in. (This is a lot easier to do for animals than
people!)  To  properly  assess  the  effect  of  different  treatments,  you  must
ensure that the groups receiving the treatments are as similar as possible.
The best way to do this is to use chance to assign subjects to the different
groups.  This  doesn’t  guarantee  that  the  groups  will  have  the  same
characteristics,  but  it  does  minimize  the  bias  that  is  introduced  when
treatments are assigned to subjects by the investigator. (A study is termed
biased if it favors one result over another. For example, if healthier patients
receive the new treatment while sicker patients receive the old treatment, the
study is biased in favor of the new treatment.)

Random Assignment to Treatments
Using  chance  to  assign  treatments  to  individuals  does  not  mean  that
treatments  are  assigned  haphazardly.  As  in  surveys,  chance  requires  a
carefully selected systematic approach. If you want to study the effect of
personal computer use on grades, you can’t let classroom teachers decide
which of their students receive personal computers and which do not. They
might assign the computers only to the brighter students to reward them for
past  performance,  or  they  might  assign  them  only  to  the  low-achieving
students with the hope that the computers might help them. Any evaluation
of the effect of the personal computers would be tainted by the differences
between the students.
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Random numbers are the preferred method for assigning experimental treat-
ments to subjects. You can’t make up your own table of numbers that you
think are random; you have to use random numbers generated by computers.
Computers don’t have birthdays, license plates, children, or any other reason
to prefer one number over another. Every number has the same chance of
being  selected.  A simple  method  for  assigning  people  to  experimental
conditions is to assign everyone a random number and then put people with
even numbers in one group and those with odd numbers in the other. Or you
can  order  the  numbers  from  smallest  to  largest  and  assign  people  with
numbers in the lower half to one group and numbers in the upper half to the
other. You can use all sorts of systems based on random numbers to assign
subjects to groups, even in very complicated experimental designs.

Unless  you  use  a  procedure  that  assigns  your  subjects  to  experimental
conditions randomly, the results of your study may be difficult or impossible
to  interpret.  Many  assignment  schemes  that  appear  random  to  the
inexperienced  researcher  turn  out  to  have  hidden  flaws.  For  example,
researchers at a hospital compared two treatments for a particular disease.
Patients who were admitted on even-numbered days received one treatment,
and  those  admitted  on  odd-numbered  days  received  the  other.  Sounds
random, but it failed. The number of patients admitted with the disease on
even days gradually became larger than the number admitted on odd days.
Why? Physicians figured out the scheme and admitted their patients on days
when the procedure that they preferred was being used. This introduced bias,
since physicians were making the decisions as to which patients received
which treatment. That may have resulted in less sick patients being admitted
on even days and sicker patients on odd-numbered days, or vice versa.

Exercise: In the 1954 clinical trial of the Salk polio vaccine in the United States, many
different study designs were considered. Discuss the advantages and disadvantages of the
following designs:

(a) Select a random sample of children and vaccinate them. Compare their polio rate to
children in the USA.(b)Vaccinate children whose parents have volunteered them for the
study  and  then  compare  the  polio  rate  for  vaccinated  children  with  the  rate  for
unvaccinated children in the same area.

(c) Vaccinate children in one city and compare their polio rate to children in another city.
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Unbiased Evaluation 

In  experiments,  just  as  in  surveys,  you  must  be  careful  not  to  let  your
prejudices  influence  the  results.  Some  events,  such  as  death,  are  not
disputable. Others, such as “improvement,” are not as clear. You must make
sure  that  the  endpoints  that  are  being  measured  are  well  defined  and
unambiguous.  Don’t  ask,  “Are  you  better  today?”  Determine  what
constitutes better, and ask about the components, for example, freedom from
pain,  ability  to  sleep  without  interruption,  performing  activities  of  daily
living, and so on.

The best way to make sure that measurements are obtained without bias is to
make sure that neither the subject nor the evaluator is aware of the experi-
mental procedure that a person has undergone. In medical studies, when a
patient doesn’t know which treatment he or she is receiving, the study is
called single blind. If neither the researcher nor the patient knows, the study
is termed double blind. People respond favorably to any treatment that they
think will help them, even if it’s a sugar pill. That is known as the placebo
effect. If you think you’ve been given a “magic” pill to help you stay awake
in class, you may be more alert than someone who hasn’t been given the pill,
even if the pill is totally ineffective. That’s why it’s important to make sure
that all people are treated as similarly as possible. If one groups gets a pill,
so should the other, even if it contains only sugar. 

If you’re evaluating a new treatment,  you should make sure to include a
group that doesn’t receive the new treatment, known as a control group. For
medical studies, the control group might receive the usual treatment for a
condition. In studies of new instructional methods, the control group would
receive standard instruction. Unless you have a control group that is being
observed  at  the  same  time  and  under  the  same  conditions  as  your
experimental group, you will not be able to draw unbiased conclusions about
the  new method.  A “new”  treatment  may  have  better  survival  rates  not
because it is better, but because patients are being diagnosed earlier today
than  they  were  in  the  past.  Similarly,  students  may  perform  better  in
statistics  classes  today,  not  because  the  teachers  are  better,  but  because
students today are more industrious.
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Properties of Samples

Now that you've designed your study, selected a random sample, observed it
without bias and objectively recorded all the necessary information, you're
ready to reach conclusions about the population from which you selected
your sample.  On first thought, this might not seem very complicated. Why
not assume that what’s true for the sample is also true for the population?
That would certainly be simple. But would it  always be correct? Do you
really believe that if 60% of your sample used nets after free distribution,
that’s  exactly  what  you would see  if  you distributed nets  in  all  malarial
areas, or even in another sample in the same area? Common sense tells you
that it’s very unlikely that the results you see in a sample are identical to
those you would obtain if you made measurements or inquiries of the entire
population of interest. A sample is not a miniature of the population. If it
was, one quick poll before an election would eliminate the need to even hold
elections. 

What is true instead is that different samples from the same population give
different results, and it’s highly unlikely especially for a continuous variable,
such as age or weight,  that any one sample will  hit  the population value
exactly on the nose. To determine what you can realistically conclude about
the population based on results from a sample, let's consider what results are
possible when you select a sample from a population. Although we could
use  mathematical  arguments  to  derive  properties  of  samples,  it's  more
appealing if you just start drawing samples from a population and see what
you find.

Taking Samples from a Population
Let's  start  off  with  a  population that  has  only  two values:  1  if  a  person
reported using a bed net the previous night; 0 if they did not. To construct a
population  in  which  half  of  the  people  report  using  a  bed  net  the  night
before, label a million cards, half of them with “used net” and half of them
with “didn't use net.” Each card represents a person in your population. Then
mix up the cards in a (very large) basket, and randomly select 10 cards, since
we want to study the behavior of sample values based on 10 cases. Count the
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number of cards that say “used net.” If you find 6 cards out of the 10 you
selected with “used net” written on them, your sample value for the average
percent using a net the night before is 60%. Now you have the result of a
single sample from your population. To see how sample results from the
same  population  vary,  you  have  to  repeat  the  procedure  over  and  over,
selecting 10 “people” each time and then counting and recording the number
of “used net” cards in each sample. 

You can think of this activity as sending numerous survey takers into the
same  population.  Each  survey  taker  obtains  a  random  sample  of  ten
individuals,  asks  whether  they  slept  under  a  net,  and  brings  back  the
summarized results to you. Of course when you conduct a real survey that's
not what happens. You get back results from the one survey that was funded.
However, you know that the outcome of that survey is one of many different
outcomes  that  could  have  been  observed.  If  you  asked  everyone  in  the
population if  they slept  under  a  bed net  the previous night  you'd  almost
certainly  get  a  different  result  than  that  you  obtained  from  your  single
survey. What concerns you is the question “How far off might my survey
results be from the true population value?” That's why you're looking at the
distribution of possible results.

 In case you lack the patience to label a million cards and select 100 samples
of 10 people each, when the probability of using a net is one half, I've done
it for you. The results are shown in Figure 2.1. 
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Figure 2.1: Distribution of Results from a 100 samples of size 10 with p=0.5

Number Who
Used ITN in
Sample

0 1 2 3 4 5 6 7 8 9 10 Total

Number of
Samples

0 0 1 11 23 26 23 11 4 1 0 100

Cumulative
Percent

0 0 1 12 35 61 84 95 99 100 100 100

The first row of the figure corresponds to all possible results when you count
the number of “use net” cards in a sample of 10 “people.” You can find
anywhere between 0 and 10 net users in a sample of 10 people. I took 100
samples of size 10 and counted how many net users were in each sample.
That's shown in the row labeled Number of Samples. There were 26 samples
with exactly 5 net users; 1 sample with 9 net users and 11 samples with 3
users. If you add up all of the values in the row labeled Number of Samples
you'll get 100, the number of samples selected. The last row,  Cumulative
Percent,  is  the percent  of  all  samples  with that  many nets  or  fewer.  For
example, the value for 4 nets is 35%. That tells you that out of my 100
samples, 35% of them had 4 or fewer net users.

From  Figure 2.1 you clearly see that all samples didn't give you the same
answer.  Only 26% of  the  samples  had exactly  50% net  users,  which we
know is the population value. Some of the samples had values pretty far
removed from 50%. 

One hundred  samples  from a  population  aren't  really  enough to  give  us
detailed information about the spread of sample values. Let's abandon our
cards,  and  use  the  computer  to  draw 10,000  (!)  samples  from the  same
population. (This is called a  computer simulation.) That should give us a
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very good idea of what the distribution of possible sample values looks like. 

A Computer Model

Figure 2.2 shows the results,  when you take ten thousand samples of ten
people from a population in which the probability of using a net the previous
night is fifty percent.  The horizontal axis shows the percent of people in
each sample who reported using nets the previous night, the vertical axis
tells you the percent of samples with that number of nets. Look at 50% on
the horizontal axis. That corresponds to samples of 10 people in which five
use nets. Only 24% of all of the samples had net use fractions of exactly
50%. (If this seems a little surprising and you don't want to label a million
cards, take a coin, designate one side “net” and flip it ten times, each time
recording how many “nets” you observe. Keep selecting 10 “people” until
you can't stand it anymore. Count how many times you found exactly five
net  users  in  each group of  10.  Even though 50% is  the probability  of  a
someone using a net, in groups of 10 people you don't often find exactly 5
using nets.)

Fifty  percent  is,  however,  the  most  frequently  occurring  value.  The
distribution is symmetric so 50% is also the median and mean. The further
away you move from 50% in either direction, the fewer samples you see.
Most  sample  values  cluster  around  the  population  value.  You  see  that
various  outcomes  are  possible,  but  they  are  not  all  equally  likely.  For
example, fractions of 0% and 100% are very unlikely. 

From Figure 2.2 you can estimate how far off your sample results may be
from the real population value when your sample size is 10 and the true
population value is  50%. You see that  it's  not  unlikely that  your  sample
results are between 30% and 70% when the real value is 50%.
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Consider what happens when you increase your sample size from 10 people
to 50 people in a survey. The population value stays the same—50%. Figure
2.3 shows  the  distribution  of  sample  results  when  the  computer  draws
10,000 samples from the same population as before, but with 50 people in
each. The shape of the distributions in similar to that of samples of size 10. 

Both distributions have the same mean and median (50%). What's different
is that in Figure 2.3 the observed percent with nets has much less spread than
it  does in  Figure 2.2.  Sample means of thirty percent or  seventy percent
aren't unusual when you take samples of 10 people. They are quite unusual
when you take samples of size 50. In Figure 2.3 you see very few samples
that are far from 50% in either direction. About 95% of the samples means
are between 46% and 64%. That's not surprising because it makes sense that
large samples are less likely to produce unusual results than small samples. 
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Think of a coin analogy. If you flip a coin three times it's not unusual that it
will come up on the same side each time. If you flip a coin 30 times, it's very
unusual that it would come up the same side each time. 

By this point you may be asking the age old question “Why should I care?
I'm going to take a single sample from the population and draw conclusions
about the population from that one sample.” You're correct. However, unless
you consider the distribution of all possible sample values, you don't have a
clue how close or how far from the true population value your sample value
might be. If you understand the behavior of lots of samples from the same
population,  you  can  use  that  information  to  determine  how close  to  the
unknown population value your sample value may be. For example, you can
calculate a range of values which you're reasonably confident will include
the population value.

50

Figure 2.3: Samples of 50 Patients, Probability of
net use is 50%
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Sampling Distribution of a Statistic

The distribution  of  all  possible  sample  values  of  a  statistic  (such as  the
percentage using a bed net the previous night), calculated from samples of a
particular size from a population, is called the sampling distribution of the
statistic.  Figure  2.3 is  an  estimated  sampling  distribution  of  means  of
samples of size 50 from a distribution that has only two possible values: use
a net and not use a net. 

A sampling distribution has a mean and standard deviation, just as does the
distribution  from  which  you  are  taking  the  sample.  Figure  2.4 contains
summary statistics for the sampling distributions of means for the samples of
size 1, 10, 50, 100, 1000. For each sample size, these are the values you get
if you take the 10,000 sample means that the computer generated and find
the average and standard deviation of the means. 
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Figure 2.4: Descriptive Statistics from 10,000 Samples of Different Sizes

Sample Size
(N)

Mean Median Standard
Deviation 

Minimum Maximum

1 50% 50% 50.00% 0.00% 100.0%

10 50% 50% 15.70% 0 100.0%

50 50% 50% 7.10% 24.00% 76.0%

100 50% 50% 5.09% 27.00% 69.0%

1000 50% 50% 1.57% 43.90% 56.6%

You see that the mean and median, 50%, are the same for the distribution of
the individual values (samples of size 1) and for the means based on 10, 50,
100  and  1000  cases.  It's  always  true  that  the  mean  of  the  sampling
distribution of means is the same as the mean of the underlying population.
You also see that the standard deviation of means based on 10 people is
smaller than the standard deviation for the individual values but larger than
the standard deviation based on samples from 50 people.  Notice that the
standard deviation for 10 cases is 10 times as large as the standard deviation
for samples with 1000 cases.

Standard Error of the Mean 
The standard deviation of the sample means has a special name. It is called
the standard error of the mean. The standard error of the mean tells you
how much the means from random samples of a particular size vary. The
standard error of the mean depends on two factors: your sample size (N) and
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the standard deviation of the population ( ( ) from which you are taking
the sample:

Standard Error of the Mean= (/*#N %

The formula tells you that 

• Sample means based on large samples vary less than sample means
based on small samples from the same population. 

• Sample means from populations with lots of variability vary more
than sample means of the same size from populations with less
variability

Let's use the formula for the standard error of the mean to calculate it for our
example. The population standard deviation is 50%. That's shown in Figure
2.4 in the row labeled Samples of Size 1.

The standard of the mean for samples of 10 is

Standard Error of the Mean= 50
√ (10)

=15.8%

For samples of size 50 it is,

Standard Error of the Mean= 50
√ (50)

=7.07%

Compare these values to the estimated standard errors shown in Figure 2.4.
The standard error  of  the mean for  samples based on 10 observations is
estimated as 15.70%. The standard error of the mean for samples based on
50 observations is estimated as 7.10%. The two sets of values are very close.
The reason the standard errors differ a little is because in  Figure 2.4 they
estimated from a large number of samples, while the values based on the
formula  are  mathematically  derived  exact  values.  The  above  formula
explains why the standard error based on 10 cases is 10 times as large as the
standard error for 1000 cases. 
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Put away the million labeled cards and unplug the computer. The formula for
the  standard  error  tells  you  what  you  need  to  know:  how much  sample
means from the same population vary. You just have to supply the standard
deviation and sample size. If you don't know the standard deviation in your
population you can estimate it from your sample and use it in the formula.
The standard error of the mean won't be exact then, but will be an estimate.

Exercise: In the previous example what would be the standard error of the mean if the
sample size was increased to 200? decreased to 5?

The standard error of the mean depends not only on your sample size but
also on the variability of the population from which you are sampling, the
population standard deviation. If everyone in the population, or no one, uses
nets,  all  samples  from the  population  will  give  the  same  result.  As  the
variability in the population increases so does the variability of the means of
samples of a particular size. If you're studying the heights of two year old
children  you  know  they  will  have  less  variability,  a  smaller  standard
deviation,  than the  heights  of  adult  men.  If  you sample 50 children you
expect that the standard error of the mean will be smaller than if you sample
50 adults.

Exercise: Calculate the standard error of the mean for samples of size 10 and 50 when
the population value for the percent using a net is 70%. Why are the values smaller than
those you calculated for the same sample sizes when the population value was 50%?

Plotting Error Bars

In  reading  the  medical  literature  you  will  often  encounter  figures  with
bracketed lines emanating from the end of bars or points. Usually the line is
drawn  so  that  it  extends  to  one  standard  error  above  the  end  and  one
standard error below the end. Look at  Figure 2.5 from (Vanden Eng et al.,
2010). The white bar for Niger shows that about 65% of households own
ITNs. The line that extends from the top of the bar goes to about 72%. The
distance from 72% to 65% , 7%, is the standard error for the proportion of
households owning a net.  (Look carefully at  the footnotes when you see
error  bars  since  sometimes  confidence  intervals  are  plotted  instead  of
standard errors.)
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Knowing the standard error is important for drawing conclusions about the
true rates in the population. The researchers did not include all households in
their study instead they selected a sample from the population of households.
The sample is one of many that could have been selected. If the standard
error is small, the sample mean stands a better chance of being close to the
population value than if the standard error is large. 

The standard errors for the bars in Figure 2.5 are not all the same. There are
two reasons for this: the numbers of households sampled differed for the
countries, and the variability of the responses differed within the countries.
The standard errors are smallest for the percentage of households owning
nets in Madagascar and for the percentage of ITNs hanging in Sierra Leone.
For both of these, the observed rates are close to 80%. If percentages are
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large (or  small),  you know that  households are quite  similar.  There's  not
much  variability.  Most  households  in  Madagascar  own  nets,  while  most
households hang nets in Sierra Leone. 

Large  scale  surveys  must  necessarily  use  more  complicated  sampling
methods  than selecting simple  random samples  from the population.  For
example,  they  may  randomly  select  regions,  then  communities  within  a
regions,  and then households within a community.  Analysis of data from
complex surveys requires additional steps for calculating the actual standard
errors.

Exercise:  Write a short paragraph summarizing the results shown in Figure 5. Does
there seem to be a relationship between the percent of households that own nets and the
percent of these nets that are actually used? Do you think that when nets are difficult to
obtain, those who own them are more likely to use them more?

Evaluating a Claim

You've  demonstrated  that  sample  means  from random samples  from the
same population vary and that  you can determine how much you expect
them  to  vary  for  different  sample  sizes  and  different  variability  in  the
population. Let's see how you can actually use this information to evaluate a
claim. In statistical terms what you're doing is testing a hypothesis.

A Distinguished Scientist claims that she has a better treatment for a disease
of interest. Of 10 patients who received her new treatment, 70% were cured.
Extensive  literature  on  the  topic  indicates  that,  worldwide,  only  50% of
patients with this disease are cured. Based on the results of her experiment,
can you tell if the physician has really made inroads into the treatment of
this disease?

Are the Observed Results Unlikely?

To evaluate the scientist's claim, you have to ask yourself the question, are
the results she observed (7 out of 10 cures) unlikely if the true population
cure rate is 50%? You know that if half of all people with a disease are cured
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by the  standard  treatment,  that  doesn’t  mean that  any time you treat  10
patients, exactly 5 will be cured. 

Look at Figure 2.2 again. How often would you expect to see a “cure” rate
of  70% or  more  in  a  sample  of  10  patients,  if  the  real  cure  rate  in  the
population is 50%? Adding up the percentages shown on the vertical axis,
you see that about 20% of the time you expect to see cure rates of 70% or
more when the true population value is  50%. If  the new treatment is  no
better than the standard, you would expect to see cure rates at least as large
as those observed by the physician almost 1 out of 5 times you repeat the
experiment. (In fact, it is possible to calculate mathematically that when the
true cure  rate  is  50%, the  probability  of  obtaining 7  or  more cures  in  a
sample of 10 is close to 17%.) 

Of course, it’s always possible that the new treatment is really less effective
than the usual treatment. So if you want to test the hypothesis that the new
treatment is not different from the standard treatment, you must evaluate the
probability of results as extreme as the one observed in either direction—
increasing or decreasing the cure rate. You can estimate from Figure 2.2 that
the probability of 30% or fewer cures and the probability of 70% or more
cures is about 40%. Based on these results, you have little reason to believe
that  the  Distinguished Scientist  is  really  onto  something.  Her  results  are
certainly not incompatible with samples selected from a population in which
the true cure rate is 50%. 

The Effect of Sample Size

As you saw above, when the true cure rate is 50%, there’s a good chance that
you will observe from 3 to 7 “cured” patients in a sample of 10 by chance
alone. In fact, most of the outcomes that can occur in a sample of 10 would
not be considered unusual even if the new cure rate is quite a bit larger or
smaller. Based on a sample of only 10 patients, it’s very difficult to evaluate
a new treatment. Another way of saying this is that a sample of size 10 has
very little ability to identify true differences. It has little power. (In statistics,
power means the probability of detecting a true difference when it exists.)
Larger samples improve your chances of detecting a difference in the cure
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rates (if, in fact, there is one) because there is less variability in the possible
outcomes. 

You may wonder if you can ever tell from a sample of just 10 patients that a
new treatment is better. The answer is yes. If you've observed 10 cures of a
previously incurable disease, you have enough evidence to believe that the
treatment is effective. Even a small number of successes is enough to give
you pause.

What if the Distinguished Scientist tells you that she achieved a 70% cure
rate based on 50 patients? Would you be more likely to believe that she's
onto something? From Figure 2.3 you see that values greater than 70% or
less than 30%, when the population value is 50%, are now noticeably less
likely  than  they  are  for  samples  of  10  patients.  Rates  that  were  not
particularly unusual when you had samples of 10 patients are quite unusual
with 50 patients. Based on Figure 2.3, you see that your chance of finding a
sample rate of 70% or more (or 30% or less) when the true rate is 50%, is
very small. If you calculate the exact probability mathematically it is 0.66%.
That means that fewer than 7 times in 1000 would a cure rate as extreme as
the one observed (7-%) occur, in a sample of size 50, if the new treatment
doesn’t differ from the standard treatment. 

The usual rule of thumb used for “unusual” is a probability of 5% or less.
That is, if results as extreme or more extreme than the ones you observe are
expected to occur by chance alone in 5 (or fewer) samples out of 100, the
results are considered unusual, or “statistically significant.” The probability
of observing results as extreme as you observed when there is no effect is
termed the observed significance level or the p-value.

Exercise: You saw that the observed result of 35 cures in a group of 50 patients was
unusual if the true rate of cure is 0.50%. Do you believe that the physician has a better
treatment? What questions would you ask her?
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The Binomial Test

You can use a computer program to calculate a binomial test that compares
an observed proportion or rate to a known standard or usual rate. To use the
binomial  test,  your  experiment  or  study  must  have  only  two  possible
outcomes,  such  as  cured/not  cured,  pass/fail,  buy/not  buy,  defective/not
defective, and so on. All of the observations must be independent, and the
probability of  success must  be the same for  each member of  the sample
population. Observations are independent if one's subject's responses can't
influence those of another. If students collaborate on an exam, their scores
are not independent. If you cure the same patient with your treatment 10
times, the observations are not independent since they are coming from the
same patient.

You specify the number of “successes” you observed in your sample and the
value that you assume is true for the population. The program calculate the
probability that you observe at least as many successes as you did, if the
population value is correct. Try it on the Distinguished Scientist data.

Figure 2.6 contains output from a software package called Graph Pad. It's
free and you do not have to download it. If you're at a computer click on the
following link

http://graphpad.com/quickcalcs/catMenu/

• Click on binomial and sign test and then click continue. 

• Enter the number of “successes” you observed . In this example 35.

• Enter the number of trials (sample size). In this example 50.

• Enter  the population value for  the probability of  success,  which is
0.50.

• Click the Calculate Probabilities button.
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The program will return the probability of observing at least the number of
successes you observed. It will also calculate the probability of results as
extreme as the ones you observed in either direction.

From Figure 2.6 you see that the probability of observing a result as extreme
as 35 successes in 50 patients (trials) when the probability of success is 0.50,
is  0.0033.  The  probability  of  observing  a  result  as  extreme in  the  other
direction  (15  or  fewer  successes)  is  also  0.0033.  The  probability  of
observing either 35 or more successes or 15 or fewer successes in 50 patients
is 0.0066. It's  pretty clear that it's  unlikely you'll  observe 35 cures in 50
patients if the probability of a cure is really 50%.

Exercise:  Using Graph Pad calculate the probability that in a sample of 50 people you
observe 20 or fewer people using bed nets, when the population value is 60%. What's the
probability that you observe 40 or more people using bed nets? 

Summary

In this chapter, you saw that different samples from the same population give
different  results.  The  sampling  distribution  of  a  statistic  tells  you,  for  a
particular sample size, the distribution of all possible sample values of the
statistic. You use the sampling distribution of a statistic to determine how
likely or unlikely various sample results are under particular circumstances.
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Figure 2.6: Graph Pad Test for the Binomial Distribution



The standard error of a statistic tells you how much results vary from sample
to sample, taken from the same distribution. As the sample size increases,
the variability of statistics calculated from the same population decreases.
From the sampling distribution of a statistic you can calculate the probability
of observing sample results that are at least as large as the one observed
when there is no difference in the population.

In subsequent chapters, you’ll learn more about testing hypotheses about a
population, based on results observed in a sample. You’ll also learn about
the importance of the normal distribution in hypothesis testing.
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3The Normal
Distribution

• What does a normal distribution look like?

• Why is it important in statistics?

• What is a standard normal distribution?

• What is a confidence interval?

Every variable and statistic has a probability distribution which tells you the
likelihood of various values. The variable “sleeping under a net last night”
has  only  two  values:  yes and  no (if  you  exclude  can't  remember).  The
probability  associated  with  answering  yes  completely  determines  the
distribution. (The probability of  no is just 1-probability of  yes.) A variable
like diastolic blood pressure has a lot of possible values and they are not all
equally  likely.  You can't  completely  describe  the  distribution of  diastolic
blood pressure with just a mean and standard deviation. 

Distributions can have the same mean and standard deviation and yet have
very  different  shapes.  Both  of  the  histograms  in  Figure  3.1 come  from
distributions with a mean of 0.5 and a standard deviation of 0.3. The sample
on the left comes from a uniform distribution, a distribution in which all
values are equally likely. The second sample is from what is called a normal
distribution. 

The normal distribution is mathematically defined. There is a formula that
exactly dictates what percent of the values fall into each interval based on
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the distance from the mean. The red curve in Figure 3.1 is the exact normal
distribution superimposed on the histogram of the sample.  Since samples
aren't miniatures of the population, samples from a normal distribution are
not exactly normal, especially if the sample size is small. 

 

The  normal  distribution is  bell  shaped.  Most  of  the  observations  are
bunched in the center. The mean, median and mode are exactly in the middle
of the distribution, and are equal to one another. The farther you move from
the center,  in either direction, the fewer the number of observations. The
distribution is symmetric. If you draw a line through the center and fold the
distribution, the two sides are the same. 

The normal distribution is very important in statistical analysis since many
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Figure 3.1: Two Distributions with Same Mean and Variance

 



variables,  such  as  height,  weight,  and  blood  pressure  have  distributions
which are approximately normal. The normal distribution also serves as a
reference point for characterizing data. 

Figure  3.2 is  a  histogram of  gestational  age  in  weeks  at  which  women
enrolled in a malaria study delivered, as determined by ultrasound (Wylie et
al.  (2013)).  Women with malaria deliver low birth weight infants so it  is
important to establish whether this is the result of prematurity or failure to
grow, since the treatment differs for the two situations. The distribution of
weeks of gestation looks approximately normal but is skewed, with more
low gestational ages than you would expect if the data were a sample from a
normal distribution.

Finding Your Way Inside a Normal Distribution
If a variable has exactly a normal distribution and you know the population
values for its mean and standard deviation, you know everything there is to
know about the likelihood of various values. Consider Figure 3.3 which is a
theoretical normal distribution of birth weights of full term newborns. The
mean is 3000 grams, and the standard deviation is 500 grams.
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Figure 3.2: Weeks Gestation at Delivery by Ultrasound 



The percentages in the intervals tell you what percent of all newborns have
weights within that interval. Thirty four percent of newborns weight between
2500 and 3000 grams and thirty four percent weigh between 3000 and 3500.
These  two  percentages  are  equal  because  the  normal  distribution  is
symmetric and the two intervals are the same distance from the mean but on
opposite sides. Since the standard deviation of the birth weights is 500, the
value 2500 is one standard deviation below the mean and the value 3500 is
one  standard  deviation  above.  In  a  normal  distribution,  68%  of  all
observations are within one standard deviation of the mean, and 95% are
within two standard deviations.  Only five percent  of  all  observations are
more than two standard deviations (1.96 standard deviations,  to be more
exact) from the mean.

The Standard Normal Distribution
Since a normal distribution can have any mean and standard deviation, the
location of a case within the distribution is usually given by the number of
standard  deviations  it  is  above  or  below the  mean.  This  is  known as  a
standard score or z-score and was discussed in more detail in Chapter 1. The
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Figure 3.3: Area Under Normal Curve



standard score axis is labeled z-score in Figure 3.3.

A normal distribution in which all values are expressed as standard scores is
called a  standard normal distribution. It has a mean of 0 and a standard
deviation of 1, as shown in Figure 3.4. Note that 2.5% of observations have
standard scores greater than 1.96 and 2.5% less than -1.96.

Exercise: Estimate the percent of babies with birth weights greater than 2500 g, Less
than 3000 g, Greater than 4000 g, Greater than 3500 g, Between 3000 and 4000 g.

Distributions of Sample Means
In  the  previous  chapter  you  saw  that  statistics  calculated  from  random
samples,  such  as  sample  means,  also  have  a  distribution.  Some  sample
means are really close to the population value, some are farther away. Figure
3.5 Shows a sampling distribution of means when the population value for
sleeping  under  an  ITN  is  50%  and  the  sample  size  is  50.  From  the
distribution you can tell how likely the various sample values for the mean
are. There's a red curve drawn on the estimated sampling distribution. It is a
normal  distribution  with  the  same  mean  (50%)  and  standard  deviation
(7.1%)  as  the  distribution  of  all  possible  sample  means.  The  normal
distribution fits the observed distribution of sample means very well. 
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Figure 3.4: Standard Normal Distribution



That's amazing! You start off with a variable that has only two values: use a
net, or  don't use a net. For a sample you calculate the percent using a net.
When  you  look  at  the  distribution  of  all  possible  sample  values  for  the
percent  using  a  net,  you  see  a  normal  distribution.  Not  only  are  many
variables approximately normally distributed but, in many situations, so are
their sample means. This remarkable finding is explained by the  Central
Limit Theorem which says that for samples of a sufficiently large size, the
distribution of sample means is approximately normal. The original variable
can have any kind of distribution. It doesn't have to be bell shaped at all.

How large a sample you need before the distribution of sample means is
approximately normal depends on the distribution of the original values of a
variable.  For  a  variable  that  has  a  distribution not  too far  different  from
normal, sample means have a normal distribution, even if they're based on
small sample sizes. If the distribution of the variable is very far from normal,
larger samples sizes will be needed for the distribution of sample means to
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Figure 3.5: Distributions of Sample Means of 50 Cases from
Binomial with p=0.5



be normal. The important point is that the distribution of means always gets
closer  and  closer  to  normal  as  the  sample  size  gets  larger  and  larger—
regardless of what the distribution of the original variable looks like. That's
why the normal distribution is very important in statistics. Not all variables
are normally distributed, but for sufficiently large sample sizes, their sample
means are normally distributed.

As  an  example,  look  back  at  Figure  3.1,  which  shows  the  uniform
distribution in which all values are equally likely.  Figure 3.6 shows what
happens when you calculate sample means based on three observations from
that distribution. Notice how the distribution is no longer flat but now has a
the shape of the normal distribution. The distribution of individual values is
flat, but thanks to the Central Limit Theorem the distribution of means is
normal. The reason that statistician find it  so exciting that sample means
have a normal distribution is that the properties of the normal distribution
can be used for calculating confidence intervals and testing hypotheses about
population means. 
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Figure 3.6: Means of samples of three observations from
uniform distribution



Confidence Intervals
When you conduct a survey or experiment you are interested in drawing
conclusions about a population value based on results from your sample.
You don't know the value of the mean for the entire population. If you did,
you wouldn't be doing the survey or experiment. You do know that your
sample mean is one of many possible means from the same population. It
may be a lot bigger or smaller than the population value or it may be pretty
close. 

Look at Figure 3.7, a normal distribution of all possible sample means. The
unknown population value is in the center, labeled “?”. Since Figure 3.7 is a
distribution  of  means,  the  standard  deviation  of  the  distribution  is  the
standard error of the mean. From the properties of the normal distribution
you know that 95% of sample means are within two standard errors of the
population mean. The red region in the tails of Figure 3.7 is the area outside
of two standard error units.
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Figure 3.7: Sampling Distribution of Means



All  you  have  to  do  is  figure  out  where  your  sample  mean  is  in  this
distribution. That's the problem. Since you don't know the population mean
(the ?) you can't place your sample mean. It might be a standard error above
the population mean or may be half a standard error below the population
mean. It can be anywhere in this distribution. 

In  Figure 3.8 the sample mean (Xbar) is one half standard error above the
unknown population mean. In  Figure 3.9 the sample mean is one standard
error below. In  Figure 3.10, the sample mean is two and a half  standard
deviations above the mean, in the red region of Figure 3.7. 
Each of the sample means has a line drawn which extends two standard error
units above it and two standard errors below it. Both of the first two intervals
“trap” the unknown population value. It's only if your sample mean is in the
unlucky red region of Figure 3.7 that an interval that extends two standard
error units above and below the sample mean will not include the population
value. That's shown in Figure 3.10. The interval around the sample mean
does not trap the population value.
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Figure 3.8: Sample Mean One Half
Standard Deviation Above
Population Mean

Figure 3.9: Sample Mean One
Standard Deviation Below
Population Mean



Can you tell if your sample mean is in the dangerous red region? Of course
not. But you do know that only five percent of the sample means fall into the
red  region,  the  area  that  corresponds  to  a  standard  score  greater  than  2
standard error units from the population mean. All you can do is calculate an
interval around your sample mean and hope that your interval is one of the
95 out of a 100 that includes the population value. The interval around the
sample mean that includes the population mean 95% of the times is called a
95%  Confidence  Interval  for  the  Mean.  (You  can  compute  confidence
intervals for other statistics besides an individual mean, for example you can
compute a confidence interval for the difference of two means.)
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Figure 3.10: Sample Mean Two and a Half Standard
Deviations Above Population Mean



Calculating a Confidence Interval
To compute a 95% confidence interval for the population mean:

• Calculate the standard error by dividing the standard deviation by the
square root of the sample size

• Multiply the standard error by 2 (or 1.96 if you're fussy)

• Subtract twice the standard error from the observed sample mean to
get the lower limit. 

• Add twice the standard error to the observed sample mean to get the
upper limit

For example, suppose you take a sample of 25 women with HIV and find the
birth weights of their full  term infants to be 2750 grams. If  the standard
deviation is 500 grams, 

• The standard error of the mean is 100 grams #
500
*#25%

%

• Twice the standard error is 200 grams

• The lower limit of the 95% confidence interval is 2550 grams 

(2750-2(100))

• The upper limit of the 95% confidence interval is 2950 grams 

(2750+2(100)) 

Does this 95% confidence interval trap the population mean birth weight for
infants of HIV mothers? You don't know. The population value is a fixed
number. It's what you get if you include the entire population of HIV babies
in  your  sample.  The  population  value  either  falls  into  your  confidence
interval or it doesn't. You don't know which is the case. All you know is that
95%  of  95%  confidence  intervals  include  the  population  value.  It's  not
strictly correct to say that the probability that a particular interval includes
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the population value is 95%. Instead you can say that you are 95% confident
that  the  interval  contains  the  unknown  population  mean.  The  following
analogy may help. Before a baby is conceived the probability of a girl is
roughly a half. Once the baby is conceived, it's either a boy or a girl. The
same is true with a confidence interval once it's calculated. It either traps or
does not trap the population value.

You  can  calculate  confidence  intervals  that  have  higher  than  a  95%
likelihood  of  trapping  the  unknown  population.  For  example  a  99%
confidence interval includes the population value 99% of the time. The price
you pay for a higher confidence level is that the interval becomes wider. You
can make a confidence interval narrower, for a fixed level of confidence, by
increasing the sample size since that will make the standard error smaller.

For  small  sample  sizes,  when  the  population  standard  deviation  is  not
known, instead of multiplying by 2, a cutoff which is based on the normal
distribution, you use values from what's called the  t-distribution which is
described in Chapter 5. The  t-distribution depends on the sample size and
takes  into  account  the  fact  that,  by  using  the  sample  standard  deviation
instead of a know population sample deviation, you're introducing additional
uncertainty.  The  t-distribution  looks  like  a  normal  distribution  but  it  has
more area in the tails. There's no need to get absorbed in minor differences
in  computing  confidence  intervals,  since  you'll  no  doubt  use  statistical
software for  the actual  calculations.  What  matters  is  that  you understand
what you can conclude based on a confidence interval. 

Exercise: This is an excerpt from the Results section of Vanden Eng (2010)

The percent  of  households  owning an ITN ranged from 58.6% (95% CI:
55.9-61.3) in Sierra Leone to 83.9% (95% CI: 81.3-86.5) in Madagascar. The
percent of ITNs suspended over a sleeping space the previous night varied
greatly among the countries. Although Sierra Leone had one of the lowest
levels of ownership and use, it had the highest hanging percentage at 85.0%
(95%  CI:  83.5-86.5).  Niger  and  Kenya  had  hanging  percentages  that  lie
between ownership and usage (58.0%, 95% CI: 52.6-63.5 and 65.1%, 95%
CI: 62.8-67.4 respectively), whereas Togo (45.7%, 95% CI: 42.9-48.5) and
Madagascar (71.5%, 95% CI: 67.9-75.1) had a smaller percentage of ITNs
hanging than either ownership or use.
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What is the 95% confidence interval for the percent of households owning an ITN in
Sierra Leone? Does this confidence interval include the population value for percent of
households  owning  an  ITN in  Sierra  Leone?  What  would  happen  to  the  confidence
interval if everything stayed the same but the sample size was increased? Decreased?
Based on their confidence intervals, do you think that Sierra Leone are Madagascar are
really different in the percent owning an ITN? Do their confidence intervals overlap?

Testing Hypotheses about Population Means
Since for sufficiently large sample sizes, the distribution of sample means is
normal, you can use this information to test hypotheses about population
means. Let's say you are interested in birth weights of infants born to HIV
positive  mothers.  You  want  to  know whether  their  average  birth  weight
differs from the known population value. You know that in the population
the average is 3000 grams and the standard deviation is 500 grams. Based on
a sample of 25 newborns, you find that the average weight is 2750 grams.
What can you conclude? Is the sample mean unusual if  the true value is
3000 grams?

Look at Figure 3.11 which shows the distribution of sample means when the
population average is 3000 grams and the standard error is 100 grams.You
know that 95% of the sample means are between 2800 g. and 3200 g. (mean
+/-2 SE), 68% within 2900 and 3100 grams (mean +/- 1 SE). 
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Is your observed mean of 2750 grams unlikely if the population mean is
3000? To answer that question you need two steps:

• Calculate the z-score for a birth weight of 2750, so you can see
where it falls within the distribution of sample means when the
population mean is 3000 grams,

          z-score= (sample mean− populationmean)
(standard error of the mean)

=
(2750−3000)

100
=−2.5 .

That's marked for you in Figure 3.11.

• Calculate the probability of observing a z-score of at least 2.5 in
absolute value.  From  Figure 3.11 that's  0.0124, the solid red
area  in  the  normal  curve.  That's  the  observed  significance
level, often referred to as the  p-value. (The next chapter talks
more  about  why  you  are  looking  at  differences  in  both
directions.)
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Figure 3.11: How Unlikely is a Sample Mean of 2750 grams?



The observed significance level is smaller than the usual cutoff of 0.05 for
“unusual”, so you can conclude that it appears unlikely that babies born to
women  with  HIV  have  the  same  average  birth  weight  as  the  general
population. Are you certain? Of course not. It's just an unusual result for a
sample from a population with a mean of 3000 grams. 

Previously, you found the 95% confidence interval for the population mean
weight of birth weights of infants with HIV positive mothers to be from
2550 to 2950 grams. Notice that the value of 3000 grams is not included in
the interval.  That's  because it's  unlikely that  the population value for the
birth weight of the HIV babies is 3000. Any value not included in the 95%
confidence interval is unlikely, using the 0.05 criterion for unlikely. In the
next chapter you will learn in more detail about the mechanics and perils of
hypothesis testing.

Summary

The normal  distribution is  important  in  statistics  because many variables
such as cholesterol, weight and blood pressure have distributions which are
approximately normal and because for  sufficiently large sample sizes the
distribution  of  sample  means  is  approximately  normal.  Although  normal
distributions  can  have  different  means  and  standard  deviations,  the
proportional distribution of cases about the mean is the same. A standard
normal  distribution  has  mean  of  0  and  a  standard  deviation  of  1.  A
confidence interval for a statistic is a range of values, based on a sample,
that with a designated likelihood include the unknown population value.
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4 Basics of Testing
Hypotheses

• What is a null hypothesis? An alternative hypothesis?

• What are statistical tests?

• On what basis do you decide to reject the null hypothesis?

• What mistakes can you make when testing a hypothesis?

• Why is sample size important when testing hypotheses?

Read the abstract below (Ezeaka et al.  (2009)).  It's very similar to many
published  abstracts.  The  authors  describe  their  observed  results,  draw
conclusions  and  support  them  with  mysterious  words,  symbols,  and
numbers, usually protected by parentheses. In this chapter you'll learn how
to interpret what's hiding in the parentheses. In particular you'll focus on the
p-values.  The  next  chapter  explains  the  cryptic  letters  and  numbers  that
directly precede the P=.

Numerous studies have reported that HIV-infected pregnant women are at increased risk
of delivery of low birth weight (LBW) infants, of preterm deliveries and of intrauterine
growth restriction. The objective of the study was to determine the effect of maternal
HIV infection on the anthropometric characteristics of the babies at birth. A prospective
study was carried out at the Lagos University Teaching Hospital, Nigeria. There were
three times more LBW babies in the HIV-positive group than in the uninfected mothers
(odds ratio = 3.47, 95% confidence interval = 1.69, 7.27; chi(2) = 12.99, P = 0.0003).The
maternal weight (t = 15.85; P = 0.0001), maternal body mass index (BMI) (t = 15.07; P =
0.0003), birth weight of infants (t = 27.17; P = 0.0001) and birth length (t = 31.20; P =
0.001) were significantly less in HIV-positive mothers than in controls. In conclusion,
poor maternal bodyweight and low BMI are significant contributors to LBW in HIV-
infected women. Nutritional counselling, dietary intake and weight monitoring during
pregnancy  should  be  emphasized  to  improve  pregnancy  outcome  in  HIV-infected
women.
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Steps in Testing a Hypothesis

When  you  conduct  a  survey  or  perform  an  experiment,  you're  usually
interested in answering questions about populations. The questions may be
relatively straightforward, such as whether a new treatment is better than the
standard  or  whether  the  ready  availability  of  Insecticide  Treated  Nets
increases their use. Or the questions may be considerably more complicated:
what  family  and  societal  characteristics  are  predictors  of  whether  a  girl
undergoes  Female  Genital  Mutilation/Cutting  (FGMC)  or  what  factors
predict neonatal mortality or morbidity for infants of HIV positive women?
The Ezeaka abstract answers questions about anthropometric measurements
of infants born to HIV-infected women and infants born to women who are
HIV free. 
Many different statistical tests are used to answer such questions, although
the answers are usually not as definitive as you would like, since you want to
draw  conclusions  about  the  population,  not  the  sample.  That  introduces
uncertainty. You've tested hypotheses in previous chapters. You considered
whether the Distinguished Scientist had a better cure than the standard and
whether newborns of HIV positive women come from a population with a
weight of 3000 grams. In this chapter we'll discuss in more detail the steps
involved in testing a hypothesis about the population.

Step 1: Specify the Null Hypothesis and the Alternative Hypothesis

All statistical tests require you to frame your question as a hypothesis. A
hypothesis is just a factual statement that may or may not be true. The new
treatment is not better than the standard is a hypothesis. ITN distribution
increases the probability of using a net is also a hypothesis. So is maternal
education decreases the likelihood of FGMC. 
To use statistical tests you have to reformulate your question in terms of two
related hypotheses: a null hypothesis and an alternative hypothesis. Together
the  null  hypothesis  and  the  alternative  hypothesis  cover  all  possible
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situations.  The  null  hypothesis is  sometimes  called  the  “no  difference”
hypothesis. Usually it's what you are setting out to disprove. For example, if
you've developed a new vaccine, you're interested in demonstrating that it's
better than the standard. Your null hypothesis is that the new vaccine and the
old vaccine are equally effective. Similarly the null hypothesis is that ITN
distribution has no effect on ITN use and maternal education is not related to
FGMC. The null hypothesis is stated in such a way that it can serve as a
frame of reference for evaluating the observed results.The null hypothesis is
assumed to  be true until  there's  sufficient  evidence to  question it.  In  the
previous chapter you tested the null hypothesis that infants born to mothers
with HIV weigh the same as infants whose mothers don't have HIV.
The  alternative  hypothesis describes the  state  of  affairs  if  the  null
hypothesis  is  false.  The alternative hypothesis  is  that  the new vaccine is
different  from  the  standard,  that  ITN  distribution  affects  net  use,  that
maternal education is related to FGMC, and that infants born to mothers
with HIV don't weigh the same as infants whose mothers don't have HIV.

Exercise: For  the  Ezeaka  abstract  ,  identify  all  of  the  pairs  of  null  and  alternative
hypotheses. For example, null hypothesis: low birth weight is equally likely for the HIV
and control groups, alternative hypothesis: low birth weight is not equally likely for the
two groups.

Step 2: Select the Appropriate Statistical Procedure
To test a hypothesis you have to select an appropriate statistical procedure
which  estimates  whether  your  observed  results  are  unusual  if  the  null
hypothesis is true. The statistical procedure depends both on the question
you are  posing and the characteristics  of  your  data.  There are  numerous
procedures  for  testing  hypotheses  about  means,  for  quantifying  the
associations between variables and for building complex models that predict
the values of a dependent variable from a set of independent variables.
A variable is termed  dependent if its values are thought to depend on the
values of other variables, called  predictor or  independent  variables. For
example,  FGM/C may depend on family socioeconomic status,  education
and region. It's the dependent variable. Factors that are associated with it are
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the predictor variables. (Chapter 5 is an overview of the some of the most
commonly used statistical procedures for testing hypotheses). 
Don't be discouraged if you read papers that use statistical techniques that
you're  not  familiar  with.  Remember  that  the  goal  of  most  statistical
procedures  is  to  test  a  hypothesis.  The different  procedures  are  after  the
same answer: if the null hypothesis is true, are the observed sample results
unlikely? Each statistical procedure transforms the observed sample results
in some way and produces what's called a  test statistic which is used to
calculate how unusual the observed results are if the null hypothesis is true. 
In  the  previous  chapter  you  calculated  a  z-score  by  subtracting  the
hypothesized population mean from the observed sample mean and dividing
the result by the standard error. The test statistic is the z-score. The normal
distribution is used to determine how unlikely the observed results are if the
null hypothesis is true. 
The actual mechanics of how a test statistic is computed don't matter, as long
as  the  data  meet  the  required  assumptions  for  that  procedure.  Statistical
software takes care of the transformations that are required and returns the
value of the test statistic and the observed significance level. Remember that
the  observed significance level is  the probability of  observing results  at
least as extreme as those observed when the null hypothesis is true.
Statistical  tests  have unusual  names.  Some are named after  the sampling
distribution which is used to evaluate whether the value of the test statistic is
unlikely if the null hypothesis is true. Others are named after the statisticians
who  introduced  them.  For  example,  if  you  don't  know the  value  of  the
population standard deviation but estimate it  from the sample,  instead of
calculating a z-score you calculate what's called a t-statistic and then use the
t-distribution to calculate the observed significance level. (The t-distribution
looks very much like the normal distribution but shifts the areas a little to
make up for estimating the standard error. You'll frequently see  t-values in
papers.  The chi-squared statistic  is  named after  the  distribution which is
often used for testing hypotheses about count data.)
Exercise:  In  the  previous  abstract,  identify  the  statistic  used  to  test  each  of  the
hypotheses.
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Step 3: Check Whether Your Data Meet the Required Assumptions for
the Procedure
Every  statistical  test  involves  certain  assumptions  about  the  populations
from which the data are sampled. Some statistical procedures go haywire
when  their  assumptions  are  violated,  while  others  remain  fairly  true  to
course.  (A  statistical  procedure  is  termed  robust  if  it  can  withstand
violations of some of the underlying assumptions. That's a compliment for a
statistical  procedure.)  Some  assumptions,  such  as  independence  of
observations and normality, are common to many procedures. 

Observations are independent of each other if one observation isn't related in
anyway to another. If you have an experimental design which takes multiple
measurements of the same variable for an individual at different times or
under  different  conditions (called a  repeated measures  design)  or  if  your
design  involves  clusters  of  individuals,  for  example,  all  members  of  a
household,  or  students  from the  same  school  or  patients  from the  same
hospital, special statistical procedures are needed.
If  your  data  fail  to  satisfy  the  assumptions  required  for  a  particular
procedure, you can attempt to transform the data values to better comply
with the necessary assumptions.  For example,  you might find that taking
logs or square roots of the data will make the observations more normal.
That's why sometimes you'll see results in papers given in logs or square
roots, though it's better in many cases to report the results in the original
units even when the data are transformed. You can also use nonparametric
tests which make limited assumptions about the underlying distributions of
the data. 

Step 4: Assume that the Null Hypothesis is True
You  must  assume  the  null  hypothesis  is  true  and  then  determine  if  the
observed sample results are unusual when the null hypothesis is true.
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Step 5: Calculate the Observed Significance Level (the p-value)
If you're using statistical software to analyze your data, once you've selected
a procedure, the software will give you the value of the test statistic and its
observed significance level, the probability of observing results as extreme
as the ones you've observed when the null hypothesis is true. This is the p-
value that is reported in papers and presentations.

Exercise: For  each  of  the  hypotheses  that  you've  identified,  what  is  the  observed
significance level that is reported. 

If you're using a statistical software package, the observed significance level
may be displayed as only zeroes. That doesn't mean it's zero, just that the
observed  significance  level  is  smaller  than  the  number  of  decimals
displayed. You can often click on a cell and see the observed significance
level to more decimal places. 

Step 6: Decide Whether to Reject the Null Hypothesis
If the observed significance level is small enough (usually less than 0.05),
you can reject the null hypothesis. Traditionally, 0.05 is used as the cutoff
for “unlikely” although there's nothing sacred about it. There's remarkably
little difference between an observed significance level of 0.049 and 0.051.
Both tell you that the observed results are unlikely if the null hypothesis is
true.  When publishing results  give  the  actual  observed significance  level
(p=0.039), not the cutoff value (p<0.05). You should always evaluate the
actual strength of the evidence against the null hypothesis instead of relying
on a magical number. 
Sometimes, an alternative hypothesis specifies in advance the direction of
the difference. For example, if you're administering nutritional supplements
to infants you may be confident that they can only increase weight, or if
you're  studying  ITN distribution  you  may  know that  their  use  can  only
decrease malaria incidence. If you can specify the direction of the difference
before you analyze the data, you can adjust the observed significance level
to take that into account. You can use what's called a  one-tailed test. You
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reject the null hypothesis based on the probability for only the anticipated
direction. You should use one-tailed tests with extreme caution because it's
difficult to know the direction of the difference with certainty. In medicine,
many  treatments  thought  only  to  benefit  patients  have  turned  out  to  be
harmful.  Don't  use one-tailed tests  simply to make your  observed results
more unlikely.
Exercise: Which of the null hypotheses in the abstract do you reject? On
what do you base your decision? 

Step 7: Report Your Results Correctly
Because  hypothesis  testing  depends  on  probabilities,  and  not  certain
knowledge, the conclusions you can draw are severely limited. Based on the
observed significance level you can conclude only that the observed results
are unlikely if the null hypothesis is true or that the observed results are not
unlikely if the null hypothesis is true. You can either reject or not reject the
null hypothesis. It's easy to get carried away and make statements that are
unwarranted:

• Don't  overestimate  the  importance  of   tests  of   statistical
significance.  Statistical  tests  and  tests  of  significance  provide
useful information but their importance is often exaggerated. A p-
value alone is not a good summary of the data. It tells you nothing
about  the  magnitude  of  an  effect  or  the  associated  variability.
Graphical methods and confidence intervals are much more useful
tools. Simple techniques often provide much more insight into the
data. With large enough samples, small unimportant effects may be
deemed “statistically significant”, while large and important effects
may be missed if the study is poorly designed.

• Don't equate statistical significance with practical significance.
When you reject the null the hypothesis, it is not necessarily true
that the differences or associations you found are important.  For
large samples, even very small observed differences in means may
be  statistically  significant.  For  example,  if  you  find  that  a  new
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treatment prolongs life by one week compared to the standard, it is
of little practical importance. Always examine the actual observed
differences and focus on those that are both statistically significant
and practically meaningful.

• Don't claim that you proved the null hypothesis is true. You can
never prove the null hypothesis is true. Think about it. Consider a
null hypothesis that states that a coin is fair, that it has the same
probability of landing on either side. If you flipped the coin 1000
times and it comes up 500 times on each side, have you shown that
the coin is absolutely fair? Of course not. Your observed results are
consistent with many different population values: 0.501 and 0.499;
0.5003  and  0.4997  to  mention  a  few.  Any  value  within  the  95
percent confidence interval for the population probability cannot be
excluded as a true value.
Your failure to reject the null hypothesis may also mean that you
haven't gathered enough evidence to reject it.  Sometimes a legal
analogy  is  made.  The  null  hypothesis  is  compared  to  the
presumption of innocence. Failure to find a defendant guilty doesn't
prove innocence. All it says is that there was not enough evidence
to establish guilt. If your sample size is small, you may fail to reject
the  null  hypothesis  even  when  population  differences  are  large.
That's  why it's  important,  before you plan a study,  to determine
how big of a sample you need in order to detect what you consider
to be an important difference.

•Don't  claim  that  the  observed  significance  level  is  the
probability that the null hypothesis is true. The null hypothesis is
either true or it is not. You don't know which. 

• Don't claim that you proved that the alternative hypothesis is
true. It's possible to get very unusual sample results when the null
hypothesis  is  true.  Just  because  your  results  are  unusual  doesn't
mean the null hypothesis is indisputably false and the alternative
hypothesis is true. The observed significance level tells you how
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often  you would  get  sample  results  as  extreme as  the  ones  you
observed if the null hypothesis is true. The observed significance
level is never exactly 0.

To Err is Statistical
Whenever you test a hypothesis, you have two paths for making a mistake:
you  can  reject  the  null  hypothesis  when  it  is  true  or  not  reject  the  null
hypothesis when it is false. Figure 4.1 shows the possible outcomes and the
creative names statisticians attach to them.
Figure 4.1: Outcomes of Testing a Null Hypothesis

The null hypothesis is:

Your action: True False

Reject Type 1 error You are correct

Not reject You are correct Type 2 error

You commit a Type 1 error whenever you reject a null that is true. You can
think of it as finding an innocent person guilty. You commit a Type 2 error
when you  fail  to  reject  a  false  null  hypothesis.  You  set  a  guilty  person
free.You can decrease your Type 1 error rate by refusing to reject the null
hypothesis unless the sample results are very, very unusual. Instead of using
a cutoff of 0.05, you could use a smaller value, say 0.00001. The problem
with this strategy is that you're increasing your chance of committing a Type
2 error. You're setting a very high standard for rejecting the null hypothesis
when  it  is  false.  Whenever  you  test  a  hypothesis  you  must  balance  the
likelihood of making one of the two possible mistakes.  If  you make one
mistake less likely, you make the other more likely. You have to decide if it's
better to set a guilty man free or imprison an innocent man. 
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Statistical Power

Failure to reject the null hypothesis when it is false is a serious issue for
anyone designing a study. It's  a terrible outcome if you have a treatment
which  is  much  better  than  the  standard  but  you  don't  reject  the  null
hypothesis  that  it  is  as  good  as  the  standard.  You  fail  to  find  the  real
difference. 
In  statistics  power refers  to  the  probability  of  rejecting  a  false  null
hypothesis. The greater the power the more likely you are to reject the null
hypothesis when it is false. Power depends on several factors:

• The size of the true difference in the population

• The variability within the groups

• The sample size 

• The significance level at which you reject the null hypothesis
Let's look at an example. Your standard drug cures 70% of the population.
Your new drug cures 71% of the population. That's a very small difference
and it's highly unlikely that you'll be able to detect it since the two sampling
distributions of means overlap so much. Do you care? Probably not. It's not
an important difference. What if the new drug cures 90% of all cases? For
the same sample size as before,  your chances of detecting the difference
improve, since the distribution of possible sample means don't overlap as
much. 
Figure 4.2 shows sampling distributions of the means when two population
means are similar (30 and 31), Figure 4.3 when they are quite different (30
and 50) and the standard error is the same. When the means are similar the
two  distributions  overlap  a  lot.  When  the  means  differ  more,  the  two
distributions  are  better  separated.  The  larger  the  difference  between  two
treatments the better your chance of finding the difference since there is less
overlap between the distributions.
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The spread of sample means, the standard error of the mean, depends on two
factors: the sample standard deviation and the sample size. You usually can't
control how much the observations in a sample vary but you can control the
sample size. The larger your sample size the better the separation between the
two sampling distributions of the mean because the sample means cluster
more tightly as the sample size increases. 
Figure 4.4 shows two sampling distributions with means of 30 and 40 and a
standard error of 5. The two distributions overlap a lot. If you decrease the
standard error to 2 by increasing the sample size, you get the results shown in
Figure 4.5. The difference between the population means is the same but the
sampling distributions have much less overlap because the larger sample size
results in a smaller standard error. You now stand a better chance of being
able to reject the null hypothesis
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Estimating Sample Size

Before you conduct any study you must determine how large a sample size
you need to have a good chance of rejecting the null hypothesis if it is false.
There's little point in evaluating differences between two treatments if the
chances are slim that you'll be able to detect even big differences when they
exist. Your ability to reject the null hypothesis depends on the actual
difference between groups in the population, so you have to specify the
smallest difference that you want to detect and the probability that you want
for detecting that difference (the power).

If you're studying differences in infant birth weights between two groups,
you probably don't  care if you fail to detect a 10 gm difference in the two
populations. The difference may be real but it's not important. You might
decide that it's important to detect  a  difference in means of at least 300
grams. Ideally, you'd like to find a sample size that guarantees that you will
always detect a difference of at least 300 grams, if it exists in the population.
You've learned by now, no doubt, that certainty doesn't exist in the world of
statistics. You must specify the probability that you want for detecting this
difference.  For example, you may want a 90% chance of detecting a
difference of at least 300 grams. You must also  indicate the observed
significance level that  you will use to reject the null  hypothesis and an
estimate of the standard deviation of the observations in each of the groups.

Figure 4.6 gives the sample size in each group required to find differences of
varying sizes, when the standard deviations are 500 grams in each of the two
groups and 5% is the significance level used to reject the null hypothesis.
For each difference the sample size is shown for 80% power and 90% power.
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Figure 4.6: Sample Size in Each Group to Detect Minimum Difference
(alpha=0.05)

Population Difference in Means Between the Two Groups
(grams)

Power 100 200 300 500

80% 393 99 44 16

90% 526 132 59 22

Look at the column labeled 100 grams. The first entry, 393, is the sample
size required in each of two groups to have an 80% chance of detecting a
difference of at least 100 grams if it exists in the population. If you want a
90% chance of detecting this difference, you'll  need 526 infants in each
group. You see that for a fixed power, the larger the difference, the smaller
the sample size required to detect it. For a fixed difference,  the greater the
power the larger the sample size. This is not surprising. It makes sense that
larger differences are easier to detect than smaller differences. Similarly, if
you want more power you have to pay for it by increasing the sample size.

The sample size also depends on alpha, the significance level you use to
reject the null  hypothesis. If you  use a large value for alpha it's easier to
reject the null hypothesis and  the required sample sizes are smaller.
However, you are increasing the Type 1 error, the probability of rejecting the
null hypothesis when it is true.

Whenever you fail to reject the null hypothesis, you have to worry about
whether your sample size was large enough to detect important differences.
That's why before you design a study it is important to determine an
appropriate sample size for the magnitude of difference that  you wish to
detect. 
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Examples of Power Calculations in Studies
When you read papers that report negative results, those for which the null
hypothesis is not rejected (p>0.05), remember that one possible explanation
for the results is that the sample sizes were not big enough to find even large
differences. Look for discussion of power when you are reading research
results.
For example, in a study of the effects of rapid malaria diagnostic tests on
treatment and outcome Msellem (2009) et al. explain:

According to initial sample size calculations, a total of 850 participants were needed
to identify an assumed reduction in malaria diagnosis of 50% with the addition of
RDT to clinical diagnosis, at a 5% significance level and a power of 80%, without
controlling for design effect of clustering within PHCUs.

In a study of the effects of impregnated bed sheets (shukas) on malaria
prevalence Macintyre et al. (2003) state 

A minimum sample size of 440 (220 experimental and 220 control participants) was
calculated using a  confidence level  of  95%, power of  80%, an estimate of 20%
malaria parasitaemia in the control group, and a least extreme detectable difference
of 10% among experimental group members. The estimated prevalence of malaria
parasitaemia  was  based  upon  clinic  reports  that  suggested  a  prevalence  of  50%
during the rainy season. Since this estimate was not based on blood samples we used
a more conservative estimate of 20% to calculate the sample size.

Although the authors of the above paper were careful in estimating a sample
size, they encountered one of the perils of sample size estimation. You have
to have reasonably good information about the population before you can
estimate a sample size. If your assumptions about the population are
incorrect you may not have the power that you were aiming for. Macintyre et
al. based their sample size estimates on a malaria prevalence rate of 20% in
the untreated group.  It  turns out that the malaria prevalence rate in the
control group was only 2%, a very big difference. You need much larger
sample sizes to detect a reduction in prevalence between the control and
experimental group when the control rate is 2% than when it is 20%.
The authors correctly conclude:

Conclusions:  These  results  suggest  that  permethrin-impregnated  bedsheets
may be protective against malaria prevention but further studies with greater
power are required to confirm this.
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Design Effect
Taking samples of people that are spread over different areas is expensive.
Interviewers may have to travel long distances and be housed and supported
in far flung locations. That's why it's attractive to sample clusters of people,
such as those living in the same manyatta or village. The disadvantage of
such a strategy is that people within the same cluster are more similar than
people from different clusters.  The observations don't  vary as much as if
they came from a simple random sample. You and your brother and sister are
probably more similar in many respects than two unrelated people. Adding
another person from the same cluster to a study doesn't give you as much
information as adding another person from a different cluster.
The design effect (deff) is a measure of how much the sampling variability
in a cluster sample differs from the sampling variability in a simple random
sample.  It's  based  on  measuring  the  similarity  between  two  randomly
selected  people  within  a  cluster  as  compared  to  two  randomly  selected
elements from different clusters. A deff of 2 tells you that you need twice as
many cases from the clusters to get the same standard errors as you would if
you took a random sample. 
The design effect can vary for each question or measurement you take. For
example, if you are sampling families, you don't get very much additional
information if you ask each member how long the family has lived in their
present  housing.  The  responses  should  be  highly  correlated.  However,
measurements  of  their  blood  pressure  will  probably  not  be  as  highly
correlated.
The design effect must be included in the computation of sample sizes and
confidence  intervals  and  tests  of  statistical  significance.  Many  statistical
software packages will make the appropriate adjustments when the design
effect is given.

Sample Size Calculator
For studies based on simple random sampling, you can use a sample size
calculator such as the one found at w  w      w  .op  e      n  e  pi.  c  om  . For complicated
designs that involve several stages such as selecting cities within a region,
then hospitals within the region, and then patients within a hospital, be sure
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to consults with a statistician for appropriate sample size estimates.

Exercise: Use the openepi software to calculate the sample size required to detect a
difference of 400 grams, with a power of 90%. (Click Sample Size, then Mean
Difference, then Enter New Data. Use 500 as the standard deviation in each of the
groups. Click Calculate to see the results.)

Summary
Statistical hypothesis testing requires identification of a null hypothesis and
an alternative hypothesis. The null hypothesis claims there is no difference
in the population. The alternative hypothesis claims the opposite: there is a
difference in the population. To evaluate a hypothesis you must determine
the  probability  of  observing  results  at  least  as  extreme  as  the  ones  you
observed,  when the null  hypothesis  is  true.  This probability is  called the
observed  significance  level  or  the  p-value.  Statistical  tests  estimate  this
probability. If the observed significance is small, usually less than 0.05, you
reject the null hypothesis. If you fail to meet the assumptions required for a
statistical procedure the observed significance level may be incorrect.

When you test a hypothesis you can make two types of mistakes: reject the
null  hypothesis  when  it  is  true  (type  1  error)  or  fail  to  reject  the  null
hypothesis  when it  is  false  (type 2  error).  Your  ability  to  reject  the  null
hypothesis when it is false depends on the size of the difference between the
groups and the sample size in each group.
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5Statistical Procedures
for Testing Hypotheses 

• Why do you need statistical procedures?

• When do you use the t-test?

• How you test if two variables are independent?

• What is a relative risk ratio?

• What is an odds ratio?

Statistical procedures are used to estimate the observed significance level--
the probability of obtaining sample results at least as extreme as those you've
observed when the null hypothesis is true (the p-value). It would be great if
there was one statistical procedure that could be used for all the different
types of hypotheses but, unfortunately, that's not the case. Just as different
diseases  require  different  treatments,  so  different  hypotheses  require
different  statistical  tests.  For  example,  there  are  statistical  procedures  for
testing the null hypothesis that two or more population means are equal; that
two or more categorical variables are independent; that there is no linear
relationship  between  a  dependent  variable  and  a  set  of  independent
variables.  You  already  used  the  binomial  procedure  to  test  the  null
hypothesis that a cure rate is 70% and the one sample z-score procedure to
test the null hypothesis that a sample of newborns of HIV positive mothers
comes from a population with an average weight of 3000 grams. 
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The  names  of  the  statistical  tests  used,  their  values,  and  the  observed
significance levels are usually reported in scientific papers. For example, in
the following abstract that summarizes differences between babies with HIV
positive mothers and babies with HIV negative mothers (Ezeaka, 2009), the
statistical  tests  used  for  determining  the  observed  significance  levels  are
identified as the t-test and the chi-square test:

There were three times more LBW babies in the HIV-positive group than in
the uninfected mothers (odds ratio = 3.47, 95% confidence interval = 1.69,
7.27;  chi(2)  = 12.99,  P = 0.0003).The maternal  weight  (t  = 15.85;  P =
0.0001), maternal body mass index (BMI) (t = 15.07; P = 0.0003), birth
weight of infants (t = 27.17; P = 0.0001) and birth length (t = 31.20; P =
0.001) were significantly less in HIV-positive mothers than in controls.

This  chapter  and  the  remaining  chapters  assume  that  you'll  be  using
statistical software for calculating statistical tests so there's little emphasis on
what numbers to square, divide or multiply to calculate the statistical tests or
build the models. Instead the focus is on what tests are appropriate for a
given  problem and  what  the  results  mean.  This  makes  the  course  more
difficult since it's  easier to multiply, divide and square than to think. We
hope that in the long run you'll find this approach more valuable. 

Some Warning on the Use of Significance Tests
Statistical  tests  and the  p-values  they produce are  important  part  of  data
analysis but they should be used and interpreted carefully. Tests are not a
substitute for good judgement on the part of the data analyst. Think before
you  start  generating  test  results.  Never  perform a  statistical  test  without
graphically examining the data first. You can usually learn much more about
your data and about the relationship between variables by examining plots
and simple tables than by looking at p-values. 

When  reporting  results,  never  report  p-values  alone,  always  include
confidence  intervals  for  the  population  values,  since  they  provide
information about the possible size of the true differences. You know that 
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small, but practically unimportant, differences may have very small p-values
if  the  samples  are  large.  Large  and  important  differences  may  not  be
statistically  significant  if  the  sample  sizes  are  small  and  the  tests  have
limited power. Journals are biased in favor of studies that report statistically
significant differences so the 5% of studies that reject the null hypothesis
when it's true stand a good chance of being published. Keep this in mind
when you come upon studies that make claims counter to those published by
other investigators or present astonishing results.

Assumption, Assumptions
Most statistical tests are based on the assumption that the data are random
samples  from  one  or  more  populations  and  that  the  observations  are
independent of each other. Since it can be difficult to randomly sample cases
from  the  entire  population  of  interest,  in  practice,  selecting  cases
independently and observing them without bias is often the best that can be
realistically achieved. (Imagine the difficulties involved in taking a random
sample of all babies of HIV positive mothers in the world!) If your sampling
strategy involves taking groups of observations from regions, hospitals or
schools,  you  need  special  statistical  procedures  that  incorporate  the
dependencies of the observations.

Statistical  tests  also  require  assumptions  about  the  distributions  of  the
variables  in  the  population.  Some  tests  require  that  data  come  from  a
particular  distribution,  such  as  the  normal  distribution,  while  other  tests,
called  nonparametric tests,  make less stringent assumptions. Before you
use  any  statistical  test,  you  should  check  whether  your  data  meet  the
assumptions required for that procedure. You should also note whether the
procedure  is  sensitive  to  the  assumptions.  That  is,  how  much  does  the
observed significance level that is calculated change if the assumptions are
violated? There are special plots and tests that you can use to check whether
the necessary assumptions appear to be violated.
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Distributions of Test Statistics
All statistical tests calculate a number based on your observed data (called
the  value  of  the  test  statistic).  Different  tests  compute  these  numbers  in
different  ways,  but  for  all  tests  the  value  of  the  test  statistic  is  used  to
calculate  the  probability  of  observing  results  as  extreme  as  those  you
observed when the null hypothesis is true. Test statistics have mathematical
distributions and sometimes tests take their names from these distributions. 

For  example,  to  test  the  null  hypothesis  that  your  sample  comes from a
population with a known mean and standard deviation, you use a z-score as
the test statistic and the normal distribution as the reference distribution for
calculating the p-value. You answer the question How often would I get a z-
score at least as large as the one I observed, in absolute value, if the null
hypothesis is true?  Other common distributions that are used as reference
distributions for test statistics to calculate p-values are the t-distribution, the
chi-square  distribution  ( .2 )  and  the  F-distribution.  The  statistical  test
determines which distribution is used. 

Although you do not need to worry about the details of these distributions,
you'll encounter the symbols t, F, and chi-square often when reading papers
or analyzing data.  Figure 5.1 shows you an idea of what these distributions
look like. ( It's good to have a mental image of what is being talked about,
rather like photos of deceased frequently mentioned relatives. ) 

Some  distributions  change  their  shape  based  on  what's  known  as  their
degrees of freedom. You can think of degrees of freedom as the number of
independent pieces of information that go into calculating a test  statistic.
Degrees of freedom can be based on the size of the sample, or the number of
groups involved in a comparison, or on the number of rows and columns in a
table. Except for the normal distribution, you see several distributions of the
same type on a single plot in  Figure 5.1. The distributions have different
degrees of freedom which are shown in the legend. The F-distribution has a
pair  of  degrees  of  freedom,  one  for  the  numerator  and  one  for  the
denominator of the test statistic.
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You see that the t-distribution looks very much like the normal distribution
and for sample sizes greater than 30, it's indistinguishable from the normal
distribution. For small sizes it has a little more area in the tails than a normal
distribution. The  t-distribution is used for testing hypotheses about means
when  the  population  standard  deviations  are  not  known.  Estimating  the
standard deviation from the data introduces additional uncertainty. 
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Statistical Software
If you're enrolled in this course, you have access to a computer that you can
use to run programs that calculate statistical tests. Some of the programs like
SAS and IBM SPSS are very expensive, so you may not have them installed
on the computer you are using. Don't worry. There is also open source (free)
statistics software called R which has all of the capabilities of the expensive
packages. With enough patience and skill you can program R to do almost
anything, except cook your dinner. If analyzing data files is an important
part of your job you may want to invest the time and effort required to learn
R . A brief introduction to R by example is at www.statmethods.net  .  
If you just want to learn about statistical procedures or analyze small data
sets,  there  is  free  web  based  software  such  as  www.openepi.com and
www.graphpad.com that  calculate  many of  the  commonly used statistical
tests,  though they may not have as many features as the more expensive
software or  R and cannot handle large data files. A good place to look for
detailed  and  reliable  information  about  statistical  software  packages  and
their output is www.ats.ucla.edu/stat. 

Game Plan for Testing a Hypothesis Using Statistical
Software
The steps you take to test a hypothesis using statistical software are
straightforward:

• Formulate  a  null  and  an alternative  hypothesis  about  the
population(s). A computer can't do this for you. Make sure your
hypothesis is appropriate for the data you have. Don't try to test
hypotheses  about  average  religions  or  average  drugs
administered.  Computers  don't  know whether  the  numbers  in
your data file correspond to codes for religions or to the number
of children. Software will happily calculate averages for nominal
variables. 
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• Select a statistical test for evaluating your hypothesis. Keep in
mind any assumptions a particular test requires.  Figure 5.2 lists
frequently  encountered statistical  hypotheses  about  means  and
proportions and the statistical tests used to test the hypotheses.
The name of the test often used in statistical software packages is
in the last column. 

• Identify  the  statistical  procedure  or  commands  in  your
software  that  compute  the  test  that  you  want. If  there  are
several versions of a test, make sure you've selected the correct
one.  If  there's  a  Help  system  or  tutorial  included  in  your
software, use it. Most statistical software programs are organized
by the type of test that is computed or model that is built.

• Check to see if your data violate the assumptions required for
the selected test. Sometimes displays that help you evaluate the
assumptions are part of the output for a particular procedure. If
not, you have to look for them elsewhere, perhaps in other special
purpose procedures.

• Look for any warnings or errors the software displays when
you run the procedure. For example, the software may warn you
if there are too many empty cells in a table or if counts are too
small.  Make  appropriate  modifications  to  your  data,  such  as
combining  categories,  or  choose  another  statistical  test  which
doesn't require the troubling assumptions.

• Check  that  the  sample  sizes  and  other  numbers  that  are
shown in the output are correct. For example, if you didn't enter
all of the numbers correctly the number of cases in your sample
will not match the sample size reported by the software. 

• In the output from the statistical procedure identify the test
statistic,  and  the  p-value,  that  correspond  to  your  null
hypothesis.  Check the labeling to see if it is for a one-tailed or
two-tailed test.  Don't  choose the one tailed value because it  is
smaller.  In  most  circumstances  you  should  use  the  two  tailed
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value.  Note  that  many  software  packages  report  multiple  test
statistics  within  the  same procedure.  You may find  a  test  that
variances are equal when you're interested in testing equality of
means. Don't confuse the results of additional tests with those of
the  null  hypothesis  you're  testing.  There's  a  reason  that  these
additional tests are performed as part of your analysis. The Help
system  may  tell  you  or  you  can  enter  the  name  of  the
unrecognized  test  into  a  search  engine.  If  the  output  lists
numerous tests for the same hypothesis, don't automatically select
the one with the smallest  p-value.  If  the observed significance
level is identified as “asymptotic”, that means your sample sizes
have to be reasonably large for the observed significance level to
be accurate. If the p-value is labeled as “exact” that indicates that
the observed significance level is calculated without the need for
making assumptions  about  the  distribution  of  the  test  statistic.
Exact tests are useful for small data sets when the validity of the
asymptotic results is in doubt. Do some research to see how the
tests  differ  and  the  circumstances  when  one  is  preferred  over
another.

• Reject the null hypothesis if the observed significance level
 is small (eg. p<0.05).

•  Report the value of the test statistic, the observed significance
level and the confidence intervals for population means, mean
differences or ratios. Include plots and descriptive statistics that
summarize your findings and help the reader understand them.
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Figure 5.2: Frequently Used Statistical Tests for Testing Hypotheses 

Null Hypothesis Test Statistic Procedure Name
A sample  comes  from  a  population
with  a  known  mean  and  standard
deviation

z-score One sample normal test of means

A sample  comes  from  a  population
with a known mean but the standard
deviation is estimated

t-statistic One sample t-test

Two  independent  population  means
are equal

t-statistic Independent samples t-test

Two related (paired) population means
are equal

t-statistic Paired samples t-test

Two or  more independent population
means are equal

F-statistic Oneway Analysis of Variance

Two or  more independent population
proportions are equal

.2 statistic Chi squared test for binomial
proportions

Rows  and  columns  of  a  table  are
independent

.2 statistic Crosstabulation 

Testing That Two Population Means Are Equal
The t-test is probably the most frequently used statistical procedure. It's used
to test the null hypothesis that two population means are equal. Another way
of stating this is that the difference between the two true means is 0. 

There are several different versions of the t-test for means:

• The one sample t-test is used to test the null hypothesis that a
single sample comes from a population with a known mean. For
example, you want to test whether the newborns in your sample
come from a population in which the average birth weight is
3000 grams. The value 3000 grams is a known constant. You're
not estimating it from a sample. You are, however, estimating
the standard deviation from the sample.
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• The  two  independent  sample t-test is  used  to  test  the  null
hypothesis that two independent samples come from populations
with the same mean. There are two slightly different versions
depending  on  whether  you  assume that  the  variances  are  the
same in the two populations. For example, in the HIV study, the
two independent sample t-test is used to determine if babies of
mothers with and without HIV have the same average maternal
weights,  maternal  body  mass  indices,  and  infant  weights  and
lengths in the population. 

• The paired samples (matched-cases) t-test  is used to test the
null  hypothesis  that,  in  the  population,  two  means  are  equal
when you have measurements from pairs of people or objects
that  are  similar  in  some  important  way.  For  example,  you
observed the same person before and after a treatment, or you
obtain  measurements  from  spouses  or  twins.  The  reason  for
pairing observations is to make the two groups being compared
more  similar  by  eliminating  some of  the  differences  between
subjects. For example, you ask each person about their ITN use
before  and  after  information  about  their  importance  is
distributed. Since the same person is asked the questions before
and after you know the before and after responses come from
people with identical values for variables like education or age
that may affect the responses. 

If the variables on which the cases are matched aren't related to
the  variable  you are  studying,  then analyzing the  data  with  a
paired test  will  actually make it  harder  for  you to detect  true
differences than if you analyzed the data with a two independent
samples  t-test  since  the  degrees  of  freedom are  smaller  for  a
paired design.

If you observe the same subject under two conditions make sure
that the effect of one treatment has worn off before the other is
given.  If  you're  giving  the  same task  or  test  to  people  under
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different conditions, make sure that any improvement shown is
not due to a learning effect—doing something better the second
time because you've had practice.

Assumptions:  If the samples sizes are small (say fewer than 30 cases) the
distributions  of  the  variables  in  the  population  should  be  approximately
normal. If sample sizes are reasonably large, don't worry about normality.

How it's calculated: Find the difference between the two means. Calculate
the standard error of the difference which is a measure of how much you
expect sample means, based on the same number of cases from the same
population to  vary.  Divide the  difference between the  two means  by the
standard  error  of  the  difference.  The  standard  error  of  the  difference  is
calculated differently depending on the type of t-test.

t (degrees of freedom)= #observed difference betweenmeans%
#estimated standard error of the difference%

Find the observed significance level-- the probability of a t-value in absolute
value at least as large as the one you observed when the null hypothesis is
true. 

One Sample t-test Example

It's  not  unusual  to  wonder  if  a  sample  comes  from a  population  with  a
known mean. For example, you may want to know if the average weight of
newborns of HIV negative mothers in your district is 3000 grams, a national
standard. The national standard is a known constant, you're not estimating it
from your data. 

Figure 5.3 is  R output for one sample t-test of the null hypothesis that the
sample of infants of HIV negative mothers comes from a population with an
average weight of 3000 grams. The command used to generate the output in
R is highlighted. ( You have to enter all of the observed values into R and
give  them  a  name.  The  birth  weights  are  stored  in  a  variable  called
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bwNoHIV.) In  the output  the alternative hypothesis  is  identified as  “true
mean is not equal to 3000”, since mu=3000 is specified in the R command
as the true value you want to test against. You know that the null hypothesis
is the opposite of the alternative hypothesis—so the null hypothesis is that
the true mean is equal to 3000 grams. 

From Figure 5.3, the value of the t-statistic, is 1.40. The degrees of freedom
(df=49) used to calculate the p-value from the t-distribution are the number
of cases (50) minus 1. The probability of observing a t-value as large as 1.40
in absolute value, when the null hypothesis is true is 0.1691. Since it's not
less than the usual cutoff of 0.05, you cannot reject the null hypothesis that
your infants come from a population with a mean of 3000 grams. Have you
proved that the average true birthweight for the population from which your
sample is selected is 3000 grams? Of course not! All you can say is that you
don't have enough evidence to dismiss the null hypothesis.

The average observed weight is 3018.49 grams. The 95 percent confidence
interval for the true average weight in the population is from 2991.87 grams
to 3045.11 grams. Any value in this interval is a plausible value for the true
population weight. The interval includes the value 3000 grams so it cannot
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Figure 5.3: One Sample t-test output from R

 > t.test(bwNoHIV, mu=3000)

One Sample t-test

  data:  bwNoHIV
  t = 1.3958, df = 49, p-value = 0.1691
  alternative hypothesis: true mean is not equal to 3000

 95 percent confidence interval:
 2991.870    3045.105

  sample estimates:
    mean of x 
   3018.488 



be excluded as a plausible value. 

Exercise: What displays would be useful for describing the results of this study? How
would you change the R command if you wanted to test that the true average weight is
2900 grams?

Two Independent Samples t-test Example

In the one sample t-test example, you analyzed a single set of numbers—a
sample of the birthweight of newborns in your district whose mothers didn't
have HIV. 

If you have two independent samples of infants, some born to HIV positive
mothers and others to HIV negative mothers, and want to test whether the
true average birth weights are equal, you use the two independent samples t-
test.  That's  the  test  that  was  used  to  analyze  the  differences  in
anthropometric measures between the two groups in the study described at
the beginning of this chapter.

Figure 5.4 is  R output from the two independent samples t-test. (R output
can be very sparse in comparison to some other software packages. You can,
however, get all kinds of additional statistics and plots by asking for them. )
The  t-test  is  identified as the Welch Two Sample  t-test.  The Welch  t-test
doesn't require any assumptions about the equality of the variances in the
two  populations.  There  is  also  a  version  of  the  two  sample  t-test  that
assumes that the variances in the two populations are equal. If you're not
sure which one to use, just go ahead and use the Welch test.
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The t-value is -10.34, the degrees of freedom are very large because there
are 520 infants in the No HIV group and 450 cases in the HIV group. The p-
value is very small so it is given in scientific notation. The value shown is
2.2 but the decimal must be moved 16 places to the left, making it a  very
small number (0.00000000000000022). The observed significance level is
never 0, but software output sometimes shows values of 0, perhaps written
as 0.0000 or the like. Sometimes you can click on a cell to see the value to
more  decimal  places.  If  you're  fortunate  enough  to  obtain  such  a  small
observed significance level, don't submit the p-value to a journal with all of
those  zeroes.  Just  say  it  is  less  than  the  smallest  number  the  software
displays, say 0.00005 in this example. Based on the observed significance
level you handily reject the null hypothesis.

The 95% confidence interval for the true difference in means is from -85
grams to -58 grams. Any values within this interval are plausible values for
the true difference between the two groups. Infants of HIV positive mothers
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Figure 5.4: Two Independent Sample t-test output from R

> t.test(bwHIV,bwNoHIV)

Welch Two Sample t-test

  data:  bwHIV and bwNoHIV
  t = -10.3448, df = 958.354, p-value < 2.2e-16

  alternative hypothesis: true difference in means is not equal to 0

  95 percent confidence interval:
      -84.52972 -57.57255

   sample estimates:
  mean of x mean of y 
  2810.345  2881.396 



may weigh anywhere  from 57 to  84  grams less  than  infants  of  mothers
without HIV. You have to pay attention to which sample means is subtracted
from which. In the t-test command the birth weights of the HIV infants is
listed first, so the second mean (for HIV negative infants) is subtracted from
the first.  The negative sign tells you that infants of HIV positive women
weigh less than infants of HIV negative women.

Paired Samples t-test Example
To study the effect of HIV on neonatal birth weight, Floridia et al. (2008)
matched each of 600 infants born to HIV positive mothers to a control baby
of the same gestational age and gender but with an HIV negative mother.
This was done to minimize the effect of differences in gestational age and
gender  on  birth  weights.  Their  goal  was  to  determine  whether  the  true
average birthweight differs between the HIV cases and controls. 

You should use a paired t-test to analyze the results of this study. Although
you have two samples, they are not independent, the infants are matched on
the basis of their gestational age and gender. You know that birthweight is
related to both gestational age and gender, so it is reasonable to create pairs
on the basis of these variables. 

Figure 5.5 is the output from the R procedure when observations are paired.
The t-value is -3.08. The observed significance level is quite small, p-value
= 0.002, so you can reject the null hypothesis that the true average weights
are the same for the two groups. Infants of the HIV positive mothers weigh
less. The observed average difference in weight between the HIV infants and
controls is -93.62 grams. The 95% confidence interval is from -153 grams to
-34 grams. The interval is wide but does not include 0. The true population
difference may be anywhere between 34 and 153 grams.

109



You can also analyze paired data by computing the differences between the
values of the two variables for a case and then using a one sample t-test to
test that the true difference is 0. The result are identical.

Analysis of Variance: Testing that Several Population
Means Are Equal
The independent samples  t-test is limited to testing hypotheses about two
population  means.  Another  statistical  test,  called  analysis  of  variance
(ANOVA), lets you test the null hypothesis that more than two population
means are equal. For example, you have five different treatments and want
to test whether the true final average diastolic blood pressure is the same for 
all treatments. 
Instead of using a  t-statistic, you calculate what's called an  F-statistic and
use the  F-distribution to determine the observed significance level. (If you
have two independent groups the results will be the same if you use a t-test
that assumes equal variances in the two groups or the analysis of variance.)
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Figure 5.5: R output for Paired Samples t-test

 >t.test(HIVweight, Controlweight,paired=TRUE)

Paired t-test

     data:  HIVweight and Controlweight  

    t = -3.0825, df = 599, p-value = 0.002147

     alternative hypothesis: true difference in means is not equal to
0

    95 percent confidence interval:

     -153.27497  -33.97374

      sample estimates:

     mean of the differences 

              -93.62435 



Analysis of variance can also be used when cases are classified into groups
based on several grouping variables. For example, subjects are classified by
both gender and diagnosis. You can test the null hypotheses that the true
average diastolic blood pressure is the same for all diagnoses, that the true
average  values  are  the  same  for  males  and  females,  and  that  for  each
diagnosis, males and females respond in the same way. That is, there is no
interaction between the two variables. 

In  many  situations  multiple  measurements  are  obtained  from  the  same
individual, say daily readings of blood pressure. Since multiple observations
from the same individual are not independent, you need a modification of
the usual analysis of variance called Repeated Measures ANOVA. Detailed
discussion  of  advanced statistical  techniques  is  beyond the  scope of  this
course but it's important for you to recognize them in the literature and to
understand the basic idea of what's being done. 

Assumptions for ANOVA

Analysis  of  variance  requires  independent  random samples  from normal
populations  with  equal  variances.  If  the  sample  sizes  in  the  groups  are
approximately equal, unequal variances don't matter much. There are other
statistical tests for equality of means, such as the Welch and Brown-Forsythe
tests,  that  don't  require  the  assumption  of  equal  variances.  There  also
nonparametric tests that don't require the assumption of normality.
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Calculating an ANOVA test

The F-test is calculated by finding the ratio of two estimates of variability:
how much observations within a group vary, and how much the group means
vary. If the null hypothesis that all population means are equal is true, these
two estimates should be similar. If they're not, that's evidence against the
null hypothesis that all population means are equal. If the value of the  F-
statistic is large, the population means vary more than you expect if the null
hypothesis is true. 

One Way Analysis of Variance Example

Laar (et al. 2010) studied 1154 pregnant women, 443 who were HIV positive
and 711 who were HIV negative at recruitment. Malaria at recruitment (r)
and at delivery (d) were also recorded. Four groups of women, based on HIV
status and presence or absence of malaria, were of interest:

1. HIV-Mal[r-d-]:        HIV -   no malaria  This is the reference group.
2. HIV-Mal[r+d-]:       HIV -   malaria at recruitment but not at delivery
3. HIV+Mal[r-d+]:      HIV+   malaria only at delivery
4. HIV+Mal[r+d+]:   HIV+  and  malaria  both  at  recruitment  and  at

delivery

Analysis of variance (ANOVA) was used to test for differences in mean birth
weight and gestation length across the four maternal infection categories.
Figure 5.6 shows the average birth weights for the four groups. Note that the
vertical axis doesn't start at 0, so the differences between the groups appear
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larger than they would if the scale started at 0. The lines at the end of the
bars represent confidence intervals for the true mean for each group. The
number  in  the  box,  labeled  md, is  the  average  difference  in  birthweight
compared to the disease free reference group.  The footnote  shows an  F-
value of 11.24 with degrees of freedom of 3 and 722. The  p-value is less
than 0.001, so the null hypothesis that the true birth weight is the same in all
groups is rejected. 

Multiple Comparison Procedures

When using ANOVA the null hypothesis that all population means are equal
is  rejected,  the  question of  which groups  are  significantly  different  from
each other remains. If you perform multiple t-tests between all possible pairs
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of means you encounter the problem that the more comparisons you make
the more likely you are to call differences significant even when they are
not.  Multiple  comparison  procedures,  sometimes  called  post  hoc
procedures,  protect  you  from  erroneously  calling  differences  significant
when they are not. There are numerous multiple comparison procedures, all
with slightly different  statistical  properties  and names.  However,  they all
require  larger  differences  between  pairs  of  means  before  a  difference  is
deemed significant than does the t-test. The result is that you are less likely
to reject the null hypothesis when it is true but you are also less likely to find
true differences.

In the footnote to Figure 5.6 the authors indicate that the Hochberg GT2 test
is used to identify pairs of mean that are significantly different from the
reference  group.  The  observed  significance  level  is  also  given  in  the
footnote. The average difference between the disease free reference group
and the HIV negative, malaria on recruitment only group is 0.123 kg. Based
on the GT2 test the observed significance level for the difference is p<0.05,
so you can reject  the hypothesis that the true means are equal.  Similarly
there is  a  0.195 kg difference between the  reference group and the HIV
positive and malaria only at delivery groups. The observed significance level
is given as p<0.016.

Exercise: What's the difference in means between the Reference groups and the group
that  is  positive  for  HIV and  malaria  at  both  recruitment  and  delivery?  What  is  the
observed significance level  for  the difference? What is  the null  hypothesis? Can you
reject it?

Testing Hypotheses About Count Data
All of the statistical procedures described so far in this chapter are for testing
hypotheses  about  population  means.  Now we'll  take  a  look  at  statistical
methods for testing hypotheses about counts. 

Calculating Percentages
Well-planned  tables  and  plots  of  counts  and  percentages  are  a  critical
component of data presentation. Figure 5.7 is a table, sometimes known as a
crosstabulation, of the data presented by Laar et al. Instead of analyzing
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actual birth weights in kilograms as you did previously, you're now looking
at the counts of infants that meet the criteria for being low birth weight. HIV
status forms the rows of the table, birth weight status forms the columns. 
The numbers in parentheses are called row percentages. They tell you what
percentage of the observations in each row fall into each cell in the row. For
example, 22.4 percent (66/295) of HIV positive women delivered low birth
weight infants and 14.2 percent (66/466) of HIV negative women delivered
low  birth  weight  infants.  Overall  17.35%  of  the  infants  were  low  birth
weight.

Figure 5.7: Two way table of Birth Weight and Maternal HIV Status

HIV Status        Low Birth Weight Infant

Yes ( %) No (%) Total (%)

Positive 66   (22.4%) 229  (77.6%) 295 (100%)

Negative 66   (14.2%) 400  (85.8%) 466 (100%)

Total 132 (17.35) 629 (82.65%) 761(100%)

You can also calculate column percentages that express each cell count as
the percent of its column total. For example, of the 132 low birth infants,
50% (66)  were  born  to  HIV positive  women and  50% to  HIV negative
women. What does this percentage mean? Very little. You can't interpret the
column percent without knowing how many HIV positive and HIV negative
women are included in the study. If there are equal numbers of HIV positive
and negative women in the study, you can conclude that the rate of low birth
weight infants is the same in the two groups. However, if there are not equal
numbers of women in the two groups, you can't draw any conclusions based
only  on  these  percentages.  They  cannot  be  interpreted  correctly  without
knowing the proportion of HIV positive women in the study. 

Whenever you display percentages in a table, make sure they are easy to
interpret. If one of your variables can be thought of as predictor variable that
has an effect on the values of the dependent variable, compute percentages
so that they add up to 100% for each category of the predictor variable. In
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this example, low birth weight depends on maternal HIV status so it's the
dependent  variable.  HIV status  is  the  independent  variable.  You want  to
report the percent of low birth weight babies separately for each HIV status.

Testing Hypotheses about a Single Population
Proportion

You see in Figure 5.7 that 22.4% of HIV positive women gave birth to LBW
infants. If on the basis of large scale studies 12% of infants are known to be
of LBW, you may want to test the null hypothesis that your sample of HIV
women comes from that population. Another way of phrasing the hypothesis
is that the HIV women in your sample come from a population with a 12%
rate of LBW .

Figure 5.8 shows results from the OpenEpi calculator for the test that of a
binomial  proportion.  (www.openepi.com/v37/Proportion/Proportion.htm)
We are using OpenEpi since you can access it without having to install the
program on your  computer.  You may prefer  to  download free  and more
complete software called EpiInfo, wwwn.cdc.gov/epiinfo, especially if you
are analyzing data.

The first line of  Figure 5.8 reports the observed proportion as 66/295. It's
very important to check that you correctly entered numbers into a computer
program and that the test results are based on them. 

The results of the test of the null hypothesis that your sample comes from a
population with a low birth weight  rate  of  12% are shown in red at  the
bottom. Since the sample size is large, the Normal-Theory Method is used to
calculate the observed significance level.  If  you have a small  sample the
observed  significance  level  is  calculated  exactly  from  the  binomial
distribution. You see that the observed significance level is very small and
you can reject the null hypothesis that the sample comes from a population
with a mean of 12%
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Many different methods for calculating the confidence interval for the true
population proportion are also shown. Whenever you use OpenEpi and there
are many ways to calculate test results or confidence intervals, one of the
results has an asterisk indicating that the editors think it's the best method.
Go with it. In this case the 95% confidence interval for the true proportion of
LBW infants for mothers who are HIV positive is from 17.99% to 27.47%,
based  on  the  preferred  Score(Wilson)  method.  The  value  of  12% is  not
included in the interval. Any value not in the 95 % interval can be excluded
as a plausible value, using 5% as the cutoff for unlikely.
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Testing that Two or More Population Proportions Are
Equal

When you test the null hypothesis that two population means are equal, you
compute  the  t-statistic  and  then,  from  the  t distribution,  calculate  how
unusual  the  observed  t-value  is  if  the  null  hypothesis  is  true.  To  test
hypotheses  about  data  that  are  counts,  you compute  what's  called  a  chi-
square statistic and compare its value to the chi-square distribution to see
how unlikely the observed value is if the null hypothesis is true.
The most common null hypothesis about proportions, which are just means
of binary variables where 0 and 1 are used for the possible outcomes, is that
two or more population proportions are equal. You can use a chi-square test
to test the null  hypothesis that the true proportion of LBW infants is the
same for HIV positive and HIV negative mothers. Another way of stating
this is that you test whether maternal HIV status and infant birthweight are
independent. Two variables are  independent  if  knowing the value of  one
variable doesn't tell you anything about the value of the other variable. 

Calculating the Chi-Square Test 
The  chi-square  test  is  based  on  comparing  observed  and  expected  cell
counts. The expected cell counts are the counts that you expect if the null
hypothesis is true. Of course, even if the null hypothesis is true, the observed
and expected values won't be identical, since the results you observe in a
sample  vary  around  the  true  population  value.  You  want  to  determine
whether  the  differences  between  the  observed  and  expected  counts  are
unusually large if the null hypothesis is true.

In  Figure 5.7 you see that a total of 132 infants are of low birth weight.
That's 17.35% of all infants. If the null hypothesis is true, 17.35% of infants
born to HIV mothers and 17.35% of infants born to HIV negative mothers
should be LBW. That means there should be 51.17 LBW infants for the 295
HIV positive mothers (295 times 0.17346), and 80.83 LBW infants for the
466 HIV negative mothers (466 times 0.17346).
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Figure 5.9: Observed and Expected Values

       Low Birth Weight Infant
HIV Status Yes 

Observed(Expected)
No 

Obs (Expected)
Total 
Obs (Expected)

Positive 66   (E=51.17) 229 (E=243.83) 295 (E=295)

Negative 66   (E=80.83) 400 (E=385.17) 466 (E=466)

Total 132 (E=132) 629 (E=629) 761 (E=761)

The chi-square statistic is computed as

.2=∑#
#observed−expected %2

expected
% , where the sum is over all cells in a table, not

including the total row and column. For each cell the expected value is the
product of the number of cases in its row and its column, divided by the total
sample size. The expected value for the first cell is (295 x 132)/761=51.17.

In this example,

  .2=#66−51.17%2

51.17
$#229−243.83%2

243.83
$#66−80.83%2

80.83
$#400−385.17%2

385.17
=8.492

For  each  cell  in  the  table  you  can  calculate  its  residual,  the  difference
between  the  observed  and  expected  counts.  These  residuals  can  be
standardized in various ways to remove the effects of different sample sizes
in each cell. By examining these residuals you can determine which cells
have  the  largest  discrepancies  between  the  observed  and  the  expected
counts.
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Figure 5.10 contains an assortment of tests from OpenEpi used to test the
hypothesis  that  HIV status and LBW are independent,  based on the data
shown  in  Figure  5.7.  Statisticians  debate  the  merits  of  different  tests,
especially for small samples. The most straightforward approach is to use
the uncorrected chi-square value of 8.492 and the corresponding two tailed
p-value of 0.003566. 

You can reject the null hypothesis that the true proportion of LBW infants is 
the same for mothers with and without HIV. Low birth weight and maternal
HIV status do not appear to be independent. Below the table you use a note
that tells you it's OK to use the chi-square test because the expected values
in all cells of the table are greater than or equal to 5. 

The  value  of  the  chi-square  statistic  doesn't  tell  you  anything  about  the
strength of the relationship between two variables since its value depends on
the sample size. In the section Measuring Association you'll return to this
table and calculate statistics which quantify the strength of the relationship
between the two variables.
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Assumptions for the Chi-Square Test

The chi-square test requires that all of the observation be independent. Each
person  contributes  only  one  count  to  a  table.  For  example,  if  you're
comparing treatments you can't give two different drugs to the same person
and  then  include  them  in  the  counts  for  both  treatments.  Another
requirement for the chi-square tests is that most of the expected counts be
greater than 5 and none less than 1. That's why in Figure 5.10 you see the
note that all of the cells have expected values greater than 5 and it's OK to
use  the  test.  The  software  doesn't  have  any  way  of  detecting  if  your
observations are independent. You're responsible for that.

Exercise: Chi-square tests are often used to check whether  two or more groups are
comparable on a set of characteristics. For example you may want to see whether the
people who refused to participate in a study are different in important ways to those who
agreed to participate. Or to determine whether the people who drop out of a study are
different from those who remain.  Figure 5.11 is a comparison of women who remained
in the Laar study all the way to delivery with women who were lost to follow-up. Why do
you think such a comparison is important? The P value is the observed significance level
from a chi squared test. What is the null hypothesis that is tested? For which variables do
the two groups differ? Do you think any off these differences are potentially important?
Can you think of any problems with the use of the chi square statistic for this purpose?
(Hint: consider the effect of sample size. For large studies is it possible that even small
differences between groups will have small p-values?) 
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Testing for Independence in Larger Tables
You  can  use  the  chi-square  statistic  to  test  the  null  hypothesis  that  any
number of rows and columns of a table are independent.  The idea is the
same as for a table with two rows: you compute expected counts based on
the assumption of independence and then you compare the observed and
expected counts. 

In a paper studying the relationship between knowledge and health seeking
behavior  Karunamoothi  and  Kumera  (2010),  interviewed  228  Ethiopians
about the measures they take to prevent malaria. 
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Figure 5.11: Comparison of women who remained in study and those lost
to followup



Figure 5.12 is a table from the paper showing the relationship between the
educational  level  of  the  respondents  and  the  primary  type  of  preventive
measures observed. To test whether the two variables are independent the
authors used the chi-squared test. Their calculated chi-square value is 58.7,
with 16 degrees of freedom and an observed significance level of p<0.001.
(For a table the degrees of freedom for the chi-square statistic is the product
of the number of rows minus 1 times the number of columns minus one.
Since there are five rows and five columns the degrees of freedom are 16.)
The authors reject the null hypothesis that education and type of preventive
measure used are independent.

Exercise: Compute the appropriate row or column percents for the table. Explain your
choice. Calculate the expected number of cases in the cells that corresponds to illiterates
who use mosquito nets. (Multiply the total number of cases who are illiterates by the total
number of cases who use mosquito nets and then divide by the total sample size.) What is
the difference between the observed count for the cell and the expected count?

Figure 5.13 shows the results from the OpenEpi software when the data from
Figure 5.12 are entered into the calculator.  The first item to notice is the
warning  that  the  table  violates  the  assumptions  required.  Most  of  the
expected cell count are not greater than 5 and 2 cells have expected values
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Figure 5.12: Preventive Measures and Educational Level



less than 1. The rule of thumb is that most cells should have expected values
greater than 5 and no cells should have expected values less than one.

If  the  assumptions  are  violated  the  observed  significance  level  may  be
wrong. In particular small expected counts may cause the chi-square statistic
to be too big. The next item to notice is  the value of the chi-square statistic
reported by Open Epi. It's quite different than that reported by the authors.
Both Open Epi and the authors report the same degrees of freedom so the
size of the table that's being analyzed is the same. Remember, just because
it's published doesn't mean it's correct!

Exercise: If a respondent could chose more than one preventive measure for protecting
themselves from malaria, could the data still be analyzed using a chi square test for
independence?  What would happen to the sample size in the table if the same person
could appear several times? What do you suggest  the authors do so the table can be
analyzed using the chi-square test?
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Figure 5.13: Chi square results from Open Epi software



Measuring Association in 2 by 2 Tables
You  used  the  chi-square  statistic  to  test  the  null  hypothesis  that  the
proportion  of  low birth  weight  infants  is  the  same for  women with  and
without HIV. Based on the chi-square value you rejected the null hypothesis.
Can you conclude anything about the strength of the relationship between
HIV status and low birth weight infants based on the chi square value?  Does
a big chi -square value mean that the relationship is strong? The answer is
no. The value of the chi-square statistic depends not only on the magnitude
of the observed differences but also on the sample size in your table. If you
multiply all cell entries  in a table by 2, you double the value of the chi
-square  statistic.  The  relationship  between  the  two variables  remains  the
same but the value of the chi-square statistic doesn't. 

In medicine and public health quantifying the strength of the relationship
between a  dichotomous predictor  variable  (risk factor)   and an outcome,
such as death, recurrence, or low birth weight,  is very important.  It's  not
enough to say HIV significantly increases the chances of a low birth weight
baby.  You  want  to  answer  the  question  By  how much? Before  you  can
answer that question you have to consider how the data were obtained.

Data often originate from one of these three different experimental designs:
• A cohort study in which you follow two groups (one with the risk

factor and the other without) and record how often the event of
interest occurs in each group. For example, you take samples of
pregnant HIV positive and HIV negative women and follow the
two groups until delivery. You then calculate the proportion of low
birth weight infants in each group.

• A  cross-sectional study in which you take a random sample of
individuals and count how many fall into each of the four cells of a
two  way  table.  For  example,  you  follow  all  pregnant  women
coming  to  your  clinic  and  record  whether  they  have  HIV and
whether they delivered a low birth weight infant.
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• A case-control study in which you examine a group of individuals
who have experienced the event of interest and a group who have
not. For each of the individuals, you record whether the risk factor
was present or not.  For example, you take a sample of low birth
weight infants and a sample of  normal birth weight infants and
record how many in each group had mothers with HIV.

Calculating the Relative Risk Ratio
In a cohort study or a cross-sectional study you can compute the incidence
rate for the event of interest for cases with and without the risk factor. That's
not possible in a case control study.  Consider Figure 5.14 which is the same
table  you  analyzed  before.  The  Laars  study  was  a  cohort  study  which
observed two groups of pregnant women, those with HIV and those without.

Figure 5.14: HIV Status and Low Birth Weight

  Low Birth Weight Infant
(event)

HIV Status 
(risk factor)

Yes 
N  (%)

No 
N  (%)

Total
 N  (%)

Positive 66 (22.4%) 229 (77.6%) 295 (100%)

Negative 66 (14.2%) 400 (85.8%) 466 (100 %)

Total 132 629 761

The incidence of LBW infants in the HIV positive women group is 22.4%.
The incidence in the HIV negative women is 14.2%.  The relative risk ratio
is the ratio of the two incidence rates. The relative risk ratio is

Relative Risk Ratio= #incidence of the event for the group with the risk factor %
# incidence of the event for the groupwithout the risk factor %

RR= 22.4
14.2

=1.58
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Women who are HIV positive are almost 1.6 times as likely to have a low
birth weight infant as women without HIV. To put it another way, the risk of
a low birth weight infant is 58% higher in women with HIV as compared to
women without HIV.

Unlike the chi square statistic whose value depends on the sample size, the
relative risk ratio is easy to interpret and can be compared across factors and
different studies:

• If the relative risk ratio is 1,  the risk factor and the outcome are
independent

• If the relative risk ratio is greater than 1, people with the risk factor
are more likely to experience the event than people without the risk
factor. 

• If the relative risk ratio is less than 1, people with the risk factor are
less likely to experience the event than people without the risk factor.

Figure 5.15 is output from OpenEpi for risk based estimates, together with
their confidence intervals.  You see that the risk ratio is 1.58 with a 95%
confidence interval of 1.16 to 2.15. Since the value of 1 is not included in
the interval, you can reject the null hypothesis that the true value is 1 (no
association).  It appears that HIV positive women are more likely to have
low birth weight infants than women without HIV. 
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The relative risk ratio doesn't tell you anything about the actual rates. The
relative risk ratio is 2 regardless of whether the underlying rates are 40% and
20% or 2% and 1%. That's why it's  useful to look at the actual difference
between the rates. The difference in low birth weight rates between the two
groups in this example, 8.21%, is labeled Risk Difference in Figure 5.15. The
95% confidence interval for the true difference is (2.5 to 13.9). The interval
does  not  include  0,  so  you  can  reject  the  null  hypothesis  that  the  true
difference in risk is 0. Testing that the risk difference is 0 is the same as
testing that the relative risk ratio is 1.

Calculating the Odds Ratio
If your data are from a case-control study, you can't calculate the relative
risk ratio because you can't calculate the probability that someone with and
without the risk factor experiences the event. If Laars had taken a sample of
low birth babies and a sample of normal birth weight babies and counted the
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number of HIV positive mothers in each group, he couldn't  calculate the
incidence rate of LBW since he decided how many cases of low birth weight
to include in the study.  

For a case-control study, the odds ratio is used to measure the relationship
between the event and the risk factor. The odds ratio is the ratio of two odds:
the odds that a case has the risk factor and the odds that the control has the
risk factor. (The odds is the number of cases with the risk factor divided by
the number of cases without the risk factor.) For this example:

• The odds that a LBW infant has a mother with HIV are 66/66= 1.
If you choose a LBW infant, based on  Figure 5.14, it's just as
likely to have a mother with HIV as a mother without HIV. 

• The odds that a normal weight infant has a mother with HIV are
229/400=0.573

• The odds ratio is 1/0.573=1.747

For a cohort or longitudinal study you can compute both an odds ratio and a
relative risk ratio.

Several version of the odds ratio and its confidence limits, based on minor
differences in statistical approaches, are shown in  Figure 5.16.  The 95%
confidence interval for the odds ratio ranges from (1.197 to 2.549) and does
not include the value of 1, so you can reject the null hypothesis that the true
value is 1. There appears to be an association between HIV status and LBW.
The odds of a LBW infant are 1.75 times greater for an HIV positive woman
than the odds for an HIV negative woman. Sometimes Cochran's test is used
to determine the observed significance level for the test that an odds ratio is
1. For a two by two table Cochran's test of conditional independence is just
the uncorrected chi-square value in Figure 5.1. 
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If the event of interest occurs infrequently (less than 10% of the time) and if
the total sample size is large, the odds ratio from a case control study can be
used as an estimate of relative risk. However, odds ratios and relative risk
ratios can differ a lot when the event is common. The odds ratio will be
larger than the relative risk ratio if the ratio is larger than 1 and smaller if the
ratio is less than 1. In this example, low birth weight is not a rare event so
the odds ratio is larger than the relative risk ratio. As expected, both indicate
that low birth weight is related to maternal HIV status.  The odds ratio is
more  difficult  to  interpret  than  the  relative  risk  ratio  since  it  can't  be
expressed  in terms of  probabilities. 

Exercise: In her abstract Ezeaka states:

There  were  three  times  more  LBW babies  in  the  HIV-positive  group than  in  the
uninfected mothers (odds ratio = 3.47, 95% confidence interval = 1.69, 7.27; chi(2) =
12.99, P = 0.0003). 

Can you think of reasons why her odds ratio for HIV is larger than that found by analyzing the
Laars data?  Remember that Laar did not exclude women who had malaria at recruitment. What
groups would you analyze in the Laar data to estimate the effect of HIV status alone?
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Exercise: Read the abstract of the Laar paper given below.

Preterm delivery  and low birth  weight  among neonates  born to  HIV-
positive and HIV-negative Ghanaian women
Laar A. K.1*, Ampofo W.2, Tuakli J. M.1, Norgbe G. K.1 and Quakyi I. A.3

 In sub-Saharan Africa, several hundreds of pregnancies are exposed to both malaria and HIV
infections annually. Adverse perinatal outcomes as a result of these infections include preterm
delivery (PTD), and low birth weight (LBW). These are not well characterized in Ghana. We
determined  whether  malaria  and  HIV  infections  during  pregnancy  increase  the  risk  of
delivering a preterm or a LBW neonate. We enrolled 1,154 women at their first antenatal visit
(443 HIV-positive and 711 HIV-negative), and prospectively collected data at delivery on 761
mother-infant pairs. Malaria parasitemia status, HIV status, hemoglobin concentration, and
CD4+  cell  count  were  determined  using  standard  methods.  We  observed  a  significantly
increased risk of LBW among HIV positive women with malaria at recruitment, odds ratio
(OR) = 4.4, 95% Confidence Interval [CI] (2.3 to 8.4), at delivery, OR = 2.5, 95% CI (1.1
to 3.7). The risk among those who were dually-infected at recruitment and at delivery was
more pronounced; OR = 11.3; 95% CI (4.6 to 27.4). Dual infection was also associated with
a  4-fold  risk  of  delivering  preterm;  OR  =  3.96;  95%  CI  (1.8  to  8.5). These  findings
demonstrate  that  neonates  of  HIV-positive  women with multiple  malaria  infections are  at
particular risk of PTD and LBW in Ghana.

For each odd ratio given in the abstract, describe the two by two table it is based on. That is,
what variable forms the rows of the table, what variable forms the columns, and what types of
cases are included in the table. For which odds ratio can you reject the null hypothesis that the
true value is 1? What do you base your decision on? Why are the confidence intervals widest
for the dual infection cases? What type of study is this? Could the authors have calculated the
relative risk ratio?

Summary

Statistical procedures are used to estimate observed significance levels for
tests of the null hypothesis. The choice of procedure depends on the null
hypothesis  and on the  characteristics  of  the  data.  It's  important  to  check
whether your data meet the assumptions required for a particular procedure.
Otherwise the test results may not be correct. The  t-test is used to test the
null hypothesis that two population means are equal. The chi-square test is
used to test that the rows and columns of a table are independent.
The relative risk ratio and the odds ratio quantify the association between a
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risk factor and an event. A ratio of 1 indicates that there isn't any association
between the risk factor and the event. A ratio greater than 1 indicates that
people  with  the  risk  factor  are  more  likely  to  experience  the  event  that
people without the risk factor. A ratio less than 1 indicates that people with
the risk factor are less likely to experience the event than people without the
risk factor.
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6 Correlation and
Linear Regression

• What is a correlation coefficient?

• What is linear regression?

• What does the slope tell you? The intercept?

• What is a residual?

• How can you tell how well a regression model fits the data?

• What are prediction intervals?

The word “correlation” is a vague term used in everyday conversation to
describe some type of  relationship between variables.  You know that the
amount you eat is correlated with the amount that you weigh; that how hard
you work in school is correlated with how successful you'll be in life (well,
maybe!), that infant gestational age is related to infant weight.

In statistics, correlation has a precise definition. It's a measure of the strength
of  the  linear  relationship  between  two  variables.  In  this  chapter  you'll
examine  relationships between pairs of  variables by plotting them and then,
if  the  relationship  is  linear,  you'll  calculate  the  Pearson  correlation
coefficient as a summary measure.  You'll also use linear regression to build
a simple model to predict the values of a dependent variable based on the
values  of  a  single  predictor  variable.  The  next  chapter  introduces  more
complicated models.

133

666666666



Plotting Data

The first step in examining the relationship between two variables is to make
a scatterplot, such as the one shown in Figure 6.1 for female life expectancy
and birth rate in 122 countries. Each point in the plot represents a country.
The point for Jordan is labeled and corresponds to a birth rate of 46.7 births
per  1000  population  (plotted  on  the  horizontal  or  x axis)  and  a  life
expectancy of 73 years (plotted on the vertical or y axis). 

You see that the points don't appear to be randomly scattered over the grid.
Instead there is a pattern, a negative relationship between the two variables,
since birth rate increases as female life expectancy decreases. If you had to
describe the relationship between the two variables you might say it's linear,
since points loosely scatter around a straight line.  
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Figure 6.1: Scatterplot of Female Life Expectancy and Birth Rate



Predictors of Birth Weight
When variables are related to one another,  it  may be possible to use the
values of one variable (the predictor or independent variable) to predict the
values of another (the dependent variable). For example, in the absence of
scales for weighing infants, easily available anthropometric measurements
may serve as substitutes for identifying low birth weight infants who need
further  care;  or  maternal  measurements  during  labor  may  predict  birth
weight  and  help  to  identify  women who may  need  medical  intervention
during delivery.  Usually the dependent variable is plotted on the vertical (y)
axis and the independent variable is plotted on the horizontal (x) axis.

Ezeaka  et  al.(2003)  examined  the  relationship  between  several  infant
measurements and birth weight.   Figure 6.2 is a plot of infant maximum
thigh  circumference  (MTC)  and  birth  weight.   The  relationship  between
birth weight and MTC is said to be positive since as birth weight increases
so does MTC. The points cluster closely around a straight line, suggesting
that MTC may be a good predictor of birth weight.
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Figure 6.2: Plot of Maximum Thigh Circumference and Birth
Weight



Pay attention to the handful of points that are far removed from the rest.  The
individual  birth weights and MTC values are not  unusual  and would not
raise  suspicion  on  a  histogram.   However,  when  the  two  values  are
considered together they're unusual. When analyzing data you should always
check that outlying points are not the result of data entry errors. If the points
are correct you should investigate whether the infants were in some way
different from the rest, such as premature infants. Do not, however, remove
the points from your analysis unless they are clearly wrong.

Buchmann et al. (2009) studied the relationship between symphysis- fundal
height (SFH) and birthweight.  The goal was to develop a simple formula to
predict  fetal  weight  at  delivery.  In  Figure  6.3 you  again  see  a  positive
relationship between SFH and birthweight, with the points clustering along a
straight line. However, the points in Figure 6.3 don't cling as tightly to the
line as the points do in Figure 6.2.
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Figure 6.3: Symphysis-fundal Height and Birth Weight



If you want to compare variables that may serve as predictors of infant birth
weight you need to compute a measure which quantifies how strongly each
of the predictor variables is related to birth weight.

The Pearson Correlation Coefficient

The  Pearson correlation coefficient (usually denoted as r)  is a statistic
that measures the strength and direction of the linear relationship between
two variables. The correlation coefficient does not tell you anything about
the cause and effect relationship between the variables. Just because two
variables are correlated that doesn't mean that one causes another.

The Pearson correlation coefficient:

• Ranges  in  value  from  -1  to  +1.  The  absolute  value  of  the
correlation coefficient  tells  you how strongly the variables are
linearly related. A value of either +1 or -1 means that you can
perfectly predict the values of one variable from the values of the
other. If the correlation coefficient is +1, all points fall on a line
with  values  of  both  variables  increasing  together.  If  the
correlation coefficient is -1, all points fall on a line but as values
of one variable increase the values of the other variable decrease.

• Is 0 when there is no linear relationship between two variables.

• Is  symmetric,  since  the  correlation  between  birth  weight  and
MTC is  the  same  as  the  correlation  between MTC and  birth
weight.  When  computing  a  correlation  coefficient,  neither
variable is singled out as a dependent variable.

• Stays the same if you add a constant to all values or divide all the
values by a constant

• When squared is the proportion of the variance of one variable
that can be “explained” by the other.
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Figure  6.4 shows  plots,  correlation  coefficients  and  summary  lines  for
correlations of different sizes. Remember that it is the absolute value of the
correlation coefficient that tells you the strength of the linear relationship.
Variables with a positive 0.5 correlation coefficient have as much of a linear
relationship as variables with a negative 0.5 correlation coefficient.
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Figure 6.4: Scatterplots with Correlation Coefficients



The correlation coefficient is  also shown on the first  three figures in the
chapter. For Figure 6.1  the correlation coefficient  (-0.87) is negative since
as the birth rate increases female life expectancy decreases. For the other
two  figures  the  correlation  coefficient  is  positive  since  as  birth  weight
increases  so  do  MTC  and  SFH.  The  largest  correlation  coefficient  in
absolute value (r=0.95) is for birthweight and MTC since the points cluster
very tightly along the straight line. The correlation coefficient between birth
weight and SFH is smaller (r=0.64). 

Warnings About the Correlation Coefficient

The correlation coefficient is one of the most popular statistics because of
the mistaken belief that it completely describes the relationship between two
variables with a single number between -1 and +1. Unfortunately that's not
the case. Consider  Figure 6.5 which shows a perfect nonlinear relationship
between  two  variables.  The  correlation  coefficient  is  small,  only  0.30,
because the correlation coefficient only measures the strength of the linear
relationship. (Compare Figure 6.5 to the plot with the same correlation of 0.3
in  Figure  6.4.  The  relationships  between  the  two  variables  are  very
different.) A small value of the correlation coefficient may mean that two
variables are not related in any way or that there is a relationship but it is not
linear. That's why the first step should always be to plot the variables and see
how they are related.  It doesn't make sense to talk about how closely points
cluster around a straight line if the line isn't a good summary. 
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Figure 6.5: Strong Nonlinear Relationship

Many different relationships can result in the same correlation coefficient.
Figure 6.6 shows four different  plots all  with a correlation coefficient  of
0.82. The correlation coefficient is an appropriate measure only for the first
plot,  since  a  straight  line  is  a  reasonable  summary  of  the  relationship
between the two variables. In the second plot, the relationship between the
two variables is not linear, so it doesn't make sense to describe how tightly
the points cluster around a straight line. In the third plot, you see that the
perfect relationship between two variables is distorted by a single point. It is
very important to identify individual points that have a large effect on the
correlation coefficient (or any other statistic). In the fourth plot there appear
to be two groups of cases in which there is no linear relationship between the
two variables. If you combine the two groups on the same plot, there appears
to be a relationship. The punch line is clear: If you don't plot your data, you
can't tell whether a correlation coefficient is an appropriate summary.
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The value of a correlation coefficient also depends on the range of values for
which  observations  are  taken.  It's  possible  that  even  if  there  is  a  linear
relationship between two variables you won't detect it if you consider only a
small range of values of the variables. For example, height may be a poor
predictor of weight if you restrict your range of heights to those over 1.8
meters.

Transforming to a Linear Relationship

Sometimes  a  relationship  that  appears  not  to  be  linear,  such  as  the
relationship  between  female  life  expectancy  and  GDP in  US  dollars  as
shown in Figure 6.7, can be made linear by transforming one or both of the
variables. (When you transform a variable you change the scale on which it's
measured. For example you take logs or square roots of the data values.)

141

Figure 6.6: Scatterplots with r=0.82



Figure 6.8 is a plot of female life expectancy against the log of GDP.  The
relationship between the variables now appears to be linear. You transform
variables because it's easier to work with a linear model rather than a more
complicated function.

Comparing Two Indexes

Often there are several different tests or measuring devices that purport to
measure the same quantity. They may differ in accuracy, cost and perhaps
even pain inflicted. Or there may be a “gold standard” that is known to be
accurate. You may be faced with the task of comparing the results from the
two alternative methods to determine if they can be used interchangeably.
Even if the correlation coefficient is a perfect +1 that doesn't mean that the
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Figure 6.7: Plot of GDP and Female
Life Expectancy

Figure 6.8: Plot of log GDP and
Female Life Expectancy



two methods are equivalent. The variables may have different means and
standard  deviations  and  have  a  perfect  correlation.  Two  methods  are
equivalent  if  the correlation coefficient  is  1  and the  means and standard
deviations  are  equal.  (You  can  plot  the  difference  between  the  two
measurements against their sum to see how the difference varies over the
range of values of the measurement.)

Testing Hypotheses About the Pearson Correlation
Coefficient

You  can  use  the  correlation  coefficient  to  just  describe  the  observed
relationship between two variables in your sample. However, it's more likely
that you want to draw conclusions about the  population based on the results
you've observed in your sample. The symbol for the population  correlation
coefficient is 0 (rho). The correlation coefficient, like other statistics, has a
sampling  distribution  since  different  samples  from  the  same  population
result  in  different  estimated  correlation  coefficients.   To  test  hypotheses
about the population your data must be an independent random sample from
a population and, if the sample size is small,  the two variables must jointly
have a normal distribution.

Figure 6.9 from Ezeaka (2003) shows sample correlation coefficients and
confidence intervals for the population correlation coefficient  0 between
MTC and various anthropometric variables.  You interpret the confidence
interval for a correlation coefficients just as you do for a mean or any other
statistic.  The  computation  is  different  but  the  meaning  of  the  interval  is
exactly the same for all statistics. For example, you are 95% confident that
the true correlation between birth weight and maximum thigh circumference
is between 0.94 and 0.96. If the 95% confidence interval does not include
the value 0, you can reject the null hypothesis that the population value for
the correlation coefficient is  0.  The last  column of  Figure 6.9,  labeled  P
Value,  is the observed significance level for the test of the null hypothesis
that  the population value is  0.  You see that  there is  a  linear  relationship
between MTC and the other anthropometric measurements. You can reject
the null hypothesis that the population coefficient is 0.
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Exercise: What  explanation can you give as  to  why the confidence intervals  for  the
correlation coefficients are so narrow?  Read the abstract of the paper to see if  your
theory is correct.

Be sure to look at the magnitude of the correlation coefficients as well as the
observed significance level. For large sample sizes, even small correlation
coefficients  will  have  small  observed  significance  levels.  Statistically
significant doesn't mean important or useful. 

When  using  statistical  software  it's  tempting  to  compute  correlation
coefficients  between  many  pairs  of  variables  to  see  if  something  is
statistically  significant.  Remember  that  even  if  the  variables  are  not
correlated  in  the  population,  you  expect  to  find  five  significant  sample
coefficients in every 100, if you use a 5% cutoff for determining statistical
significance. If you are examining many coefficients, you need a stricter cut
off to protect you from rejecting too many times the null hypothesis when it
is true.

Exercise: Elizabeth, et al. (2013) conducted a study in Uganda to identify predictors of
infant birth weight. Figure 6.10 is a summary of the results: 

144

Figure 6.9: Correlations with Maximum Thigh Circumference



Which variable, based on the correlation coefficient, appears to be the best predictor of
birth weight? Compare the correlation coefficients with those from the Ezeaka study.
What possible explanations can you think of for the differences between the two sets of
correlation coefficients?

Correlation Coefficients Based on Ranks

For  small  sample  sizes  the  Pearson  correlation  coefficient  requires  an
assumption of normality. For ordinal data, or for interval data that do not
satisfy the normality assumption, you can calculate a correlation coefficient
that is  based on ranks.   For each variable you sort  the data values from
smallest to largest and then assign ranks, where 1 is given to the smallest
number, 2 to the second smallest number, and so on. You replace the actual
data  values  with  their  ranks  and  then  compute  the  Pearson  correlation
coefficient  which  then  changes  its  name  to  the  Spearman  correlation
coefficient.

Like  the  Pearson  correlation  coefficient,  the  Spearman  rank  correlation
ranges between -1 and +1, where -1 and +1 now indicate a perfect linear
relationship between the ranks of the two variables. The interpretation is the
same, except that the relationship is between ranks, not the actual values. To
use the Spearman correlation coefficient, the actual values of the variables
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Figure 6.10: Correlation of anthropometric measures with birth weight



don't have to be linearly related but their ranks do. Correlation coefficients
calculated from ranks aren't  affected as much by outliers as are  Pearson
correlation coefficients.

Exercise:  Elshibly et al. (2008) looked at maternal characteristics as predictors of birth
weight in Sudanese infants. Their results are below:

Summarize their findings. Explain why the correlation coefficients are so much smaller
than those reported by Ezeaka and by Elizabeth. Do you think any of these variables are
good predictors of infant birth weight?

Linear Regression Model

Based on the Pearson correlation coefficient,  you see that birth weight is
linearly related to both maximum thigh circumference and to symphysis-
fundal  height  (SFH).  Can  you  use  the  correlation  coefficient  to  actually
predict  birth  weight  from  these  measurements?  Of  course  not.  The
correlation coefficient is  an absolute number that just  tells  you about the
strength of the linear association between two variables. There's no way to
predict  birth  weight  from  MTC  if  all  you  know  is  that  the  correlation
coefficient  between the two variables  is  0.95.  To predict  the  values  of  a
dependent variable from a predictor variable you must build a model that
relates the two values. You need a model that returns birth weight when you
have SFH.
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A Straight Line Model

Take a look again at Figure 6.3 again. Underneath the plot there's a cryptic
statement that says “The solid line represents the linear regression formula
produced by the data ( y=301 +78x).” You may (or may not) recognize the
equation as the formula for a straight line.  The authors selected this line,
based on the observed data, to predict the values of birth weight from SFH.
For example, for an SFH of 30, the predicted birth weight is:

predicted birthweight in grams=301 + 78 x 30  = 2641 grams

Figure 6.11 is the line that relates birth weight to SFH, the regression line.
The intercept is 301. That's the value for birth weight when SFH is 0. It's of
no interest in this example since a height of 0 cannot realistically occur. The
slope of 78 tells you that for a centimeter change in SFH there is a 78 gram
change in birthweight. The diagram shows that for an SFH of 30 cm. the
predicted birth weight is 2641 grams (301+78(30)). (The predicted value is
the value on the line.) The predicted birth weight for an SFH of 35 cm. is
3031  grams.  That's  a  difference  of  390  grams  in  birthweight  for  a  5
centimeter change in SFH. For a one centimeter change in SFH the change is
78 grams (390/5), the slope.
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If  the slope is positive,  as the values of one variable increase,  so do the
values  of  the  other  variable.  If  the  slope  is  negative,  the  values  of  one
variable increase, the values of the other variable decrease. If the slope is
large,  the  line  is  steep,  indicating  that  a  small  change  in  the  predictor
variable results in a large change in the dependent variable. If the slope is
small,  there is a more gradual increase or decrease. If the slope is 0, the
value  of  the  dependent  variable  doesn't  change  with  values  of  the
independent variable. It's the same as having a correlation coefficient of 0.

Unlike the Pearson correlation coefficient which is the same whether you
correlate birth weight and SFH or SFH and birth weight, the values of the
slope and intercept  of  a  line  depend on which variable  is  the dependent
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Figure 6.11: The Regression Line Y=301+78X



variable and which is the predictor variable. The values for the slope and
intercept will be different if you're predicting birthweight from SFH or SFH
from birth weight.

Exercise: What is the predicted birth weight based on an SFH of 33 cm.? Of 37 cm.?In
Figure 6.9 the values for the slope are called 1 . What is the dependent variable for the
equations  the  authors  estimated?  Can  you  write  the  equation  to  predict  MTC  from
birthweight? What's the slope if you want to predict birthweight from MTC.

Least Squares Regression Line

The line in Figure 6.8 is the same line that you see in Figure 6.3, except that
it's not surrounded by all of the data points. A lot of different lines can be
drawn through the data points since the data don't fall perfectly on a line.
You might wonder why the authors selected the line that they did.

The  authors  state  that  they  are  reporting  the  “linear  regression  formula
produced  by  the  data.”  The  line  is  properly  called  the  least  squares
regression line. It is the line that has the smallest sum of squared distances
from the observed data points to the values predicted by the line.  

In  Figure 6.12 you see the observed data points marked in red. For each
point the dotted line is the distance between the observed weight and that
predicted by the regression line. This is called the residual. The line that has
the smallest sum of squared residuals is the least squares regression line. For
these data the least squares regression line has an intercept of 301and a slope
of 78. Those are the values reported by the authors. Any other line would
have a larger sum of squared distances from the points to the line.
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Exercise: To  make  the  regression  line  computations  easier  for  medical  workers,
Buchmann et al.  simplified the line to Weight=100 (SFH-5). What is the slope of the
simplified line? The intercept?. Predict the birth weight for an SFH of 30 cm. based on
the original line and the simplified line.

Exercise:  You can very easily compute the least squares regression line using  R. The
output in Figure 6.13 is the regression line for Figure 6.1. Write the equation to predict
female life expectancy from birth rate. What is the predicted female life expectancy for
Jordan?  (The  birth  rate  for  Jordan  is  46.7per  1000  population  and  the  female  life
expectancy is 73 years.) What is the residual, the difference between the observed and
predicted life expectancy values?
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Figure 6.12: Residuals from Least Squares Line



Figure 6.13: R Output for the Regression Line that Predicts Female
Life Expectancy from Birth Rate

> reg1=lm(mydata$lifeexpf~mydata$birthrat)
> reg1
Call:
lm(formula = mydata$lifeexpf ~ mydata$birthrat)
Coefficients:
    (Intercept)      mydata$birthrat  
        89.5889          -0.7447  

How Well Does the Regression Line Fit?

You know,  that  the  least  squares  regression  line  is  the  line  that  has  the
smallest  sum  of  squared  distances  from  the  points  to  the  line.  But  that
doesn't mean it fits the data well.  Don't be tempted to use the size of the
slope as a measure of how well the line fits the data. The value of the slope
depends on the units in which the variables are measured. The slope is much
larger  when  you  predict  birthweight  in  grams  from  maximum  thigh
circumference  than  when  you  predict  birthweight  in  kilograms  from
maximum thigh circumference.

The absolute value of the Pearson correlation coefficient between the two
variables tells you how well the line fits the data points.  You see this in
Figure 6.4, the larger the correlation coefficient in absolute magnitude, the
closer the points are to the regression line. Although the value of the slope
changes if you switch the dependent variable and  the independent variable,
the correlation coefficient stays the same. That means that you can predict
birth weight from SFH as well as you can predict SFH from birth weight.
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If you square the correlation coefficient, you obtain another useful measure.
The square of the correlation coefficient, designated as R2 , tells you what
proportion of the variability in the dependent variable that is “explained” by
the independent variable. You see R2 reported in Figure 6.10. The R2  for
predicting birth  weight  from foot  length  is  0.58.   More than half  of  the
observed variability in birth weights can be attributed to differences in foot
length.

All infants don't have the same birth weight. One of the explanations for this
is that infants differ in size, some have long feet, some large maximum thigh
circumferences and so on.  If  foot  length was a perfect  predictor  of birth
weight everyone with the same foot length would have exactly the same
birth weight.   All  points would fall  on the regression line and all  of  the
residuals  would  be  0.  Foot  length  would  “explain”  all  of  the  observed
variability in birth weights and R2 would be 1. When all of the points don't
fall  exactly  on  the  regression,  you  can  still  calculate  how  much  of  the
observed variability in birth weights can be attributed to differences in foot
lengths. That's what R2 tells you. R2 ranges from 0 to 1. Values close to 1
mean that most of the variability in the dependent variable is explained by
the  independent  variable,  values  close  to  0  mean  that  the  independent
variable is of little use in predicting the dependent variable when a linear
model is used.

Some Warnings About Linear Regression
• Don't  fit  a straight line model to the data without first plotting the

variables and making sure the relationship is  linear over the entire
range of values of the independent variable.

• Don't make predictions outside the range of the observed values of the
independent variable that you use to build the model. For example, if
the observed range for foot lengths is 6.0 to 9.3 cm., don't predict birth
weights for infants whose foot lengths aren't within this range.   You
don't  know if  the  relationship  between  the  two  variables  is  linear
outside of your observed range.
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• Don't expect that the model will  fit another sample from the same
population as well as it fits your data because the slope and intercept
are the best values based on your data. Software packages produce
adjusted R2 values  which  modify  the  observed  R2 so  it  better
reflects the relationship between the two variables in the population.

• Do beware of data points that have a large impact on the values of the
slope and the intercept.  For small  datasets  even a single point  can
make a big difference. Most software packages have special programs
that help you identify these influential points.

Testing Hypotheses about the Linear Regression Model

A regression line, just like the correlation coefficient, can be used to just
summarize observed data. Often you want to do more than that. You want to
draw conclusions about the population from which the sample was selected.
You want to calculate confidence intervals for the population slope and test
the null hypothesis that the population value for the slope is 0.

To  do  this  you  have  to  make  some  assumptions about  the  relationship
between the two variables in the population from which your sample was
obtained:

• All the observations must be independent. For example, you can't
include the same person more than once.

• For  each  value  of  the  independent  variable  there  is  a  normal
distribution of values of the dependent variable. For example, for
a  foot  length  of  7  cm.  there  is  a  normal  distribution  of  birth
weights.

• All these distributions must have the same variance.

• The population means of the distributions must fall on a straight
line.
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Figure  6.14 is  a  diagram  of  the  assumptions.  For  each  value  of  the
independent variable (x1 to  x4)  there is  a distribution of possible sample
values  for  the dependent  variable.  In  the population the  distributions are
normal,  their  means   fall  on  a  straight  line,  and  the  variances  of  the
distributions are all the same.

The statistical package that you are using will report the slope, the intercept
and confidence intervals for the population values. You will also see a test of
the null hypothesis that the population slope ( 1 ) is 0. That's the same test
as the test for the hypothesis that the population correlation coefficient is 0.

The  software  package  will  also  produce  plots,  such  as  those  shown  in
Figure 6.15, that can be used to test the regression assumptions. A plot of
residuals against predicted (fitted) values should not show any pattern. If it
does  it's  possible  that  the  linear  model  is  incorrect.  The  second  plot
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Figure 6.14: Linear Regression Assumptions



(standardized  residuals  against  predicted  values)  should  not  show  any
pattern if the equal variance assumption is met. If you see increasing spread
the variance may be increasing with the values of the independent variables.
The Normal Q-Q plot is looking for violations of the normality assumption.
If the residuals are normally distributed the points should fall on a straight
line.  The last  plot  identifies  points  that  may have a  large impact  on the
estimates of the regression coefficients.
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Figure 6.15: Checking Linear Regression Assumptions with R



Confidence Intervals and Prediction Intervals
When you make a prediction using your regression line, you don't expect to
be exactly correct. You know that if you took another sample of pregnant
women from the same population you would get  different  values  for  the
slope and the intercept of the regression line and therefore different predicted
value.  To  make  your  prediction  more  useful  you  want  to  estimate  the
variability associated with it.  If you know that for an SFH of 30 cm. the
range of possible birth weights is from 2400 to 2600 grams, that's much more
useful than if the plausible range of values is from 2000 to 4000 grams.
A model,  such as linear regression, lets you make two different types of
predictions: you can predict the average infant birthweight for all women
who have an SFH of 30 cm. or you can predict the infant birthweight  for a
particular woman with an SFH of 30 cm. The predicted value is the same but
the  variability  is  different.  You  can  predict  the  average  value  with  less
variability than you can predict the value for an individual case. 
When  estimating  the  variability  of  a  prediction  for  all  women  with  a
particular SFH,  you just have to worry that the slope and the intercept vary
from sample to sample from the same population. For an individual value
you have yet an additional worry:  not all women with the same SFH have
babies  of  the  same  weight.  For  each  value  of  SFH  there  is  a  normal
distribution of birth weights. For any value of the independent variable,  the
variability associated with the predicted value for an individual is always
larger than the variability associated with predicting the mean. 
The  variability  for  a  prediction  also  depends  on  the  actual  value  of  the
independent  variable.  Predictions  are  most  stable  for  values  of  the
independent variable close to the sample mean. That's because the regression
line always passes through the point that corresponds to the mean of the
dependent  variable  and  the  mean  of  the  independent  variable.  Different
samples from the same population don't change the predicted value as much
for  points  close  to  the  mean as  they  do  for  points  farther  away.  As  the
distance from the mean increases, so does the variability associated with the
prediction. 
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Prediction Intervals
Figure 6.16 illustrates what we've been talking about. You see fifteen data
points and the least squares regression line based on the points.  The two
bands closest to the regression line are the 95% confidence intervals for the
predicted mean value. The distance between the two bands is narrowest at
the mean birth rate for all cases. Quite a few of the of the data points don't
fall within these bands. That's because the interval is for predicting mean
values, not values for individual cases. 
The prediction intervals, shown by the two outermost bands, are much wider
than the confidence intervals. The prediction interval  is a range of values
that  you  expect  to  include  the  actual  value  for  a  particular  case  with  a
designation likelihood. The prediction interval takes into account the two
sources of variability for an individual prediction: sample regression lines
vary about the population regression line and individual values vary about
the mean.  (Confidence intervals  are  for  population values like the mean,
slope, or intercept, not for values of individual cases. That's why the term
prediction interval is used for individual cases.)
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Figure 6.16: Prediction Intervals and Confidence Intervals



Summary

The Pearson correlation coefficient  is a symmetric measure that ranges from
-1  to  +1  and  its  absolute  value  indicates  the  strength  of  the  linear
relationship between two variables.   A linear regression model is used to
predict the values of a dependent variable from a single predictor variable. A
residual is the difference between the observed and predicted values for a
case. The square of the correlation coefficient tells you what percent of the
variability  in  the  dependent  variable  is  explained  by  the  independent
variable.  Predicted values for the average of all cases with a particular value
for  an independent  variable  are  less  variable  than predicted values  for  a
particular case with the same value for the independent variable.
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7Statistical Models 
• What is a statistical model?

• What is a multiple linear regression model?

• What is a logistic regression model?

• Why do survival data need special models?

In the previous chapter you used a simple statistical model to predict infant
birth  weight  from  single  independent  variables—maximum  thigh
circumference and symphysis fundal height. The model that describes the
relationship between the dependent variable and the predictor was a straight
line. The straight line has two  parameters—the slope and the intercept—
and you estimated the values of these from your data. (A parameter is the
population value for a constant in a model.) Whenever you fit a model to
data you have an equation that shows the relationship between the dependent
variable and the predictor variables. The equation involves some unknown
parameters that you estimate from your data values. 

The straight line is one of many mathematical models that relate the value of
a dependent variable to the values of one or more predictor variables. Some
models, such as those in the life sciences or physical sciences, are based on
known  relationships  such  as  that  between  the  amount  of  a  radioactive
isotope remaining at a particular time and the decay parameter. If you don't
have theory to guide, you want to select the simplest mathematical model
that is consistent with the observed data. 
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Why Fit a Model?

There  are  different  reasons  for  fitting  statistical  models.  In  the  previous
chapter  your  goal  was  prediction.  You  just  wanted  to  estimate  the  birth
weight from  readily available infant measurements. As long as you have a
good prediction you don't care what variable(s) it's based on. 

Statistical  models  are  also  used  as  a  tool  for  studying  the  relationship
between a dependent variable and a set of independent variables. They help
you  organize  and  simplify  the  observed  relationships  so  that  you  better
understand the processes at work in the underlying population. The goal is
not so much to make a prediction for an individual case as to explore the
relationships between the variables. For example, you can build a model that
relates maternal characteristics such as age, parity, prenatal care, nutrition,
and gestational age to birth weight. Or you can estimate the likelihood that a
person uses an ITN based on their age, education and gender. Your interest is
not in predicting the actual birthweight for an infant or predicting whether a
particular  person use an ITN. Instead you want  to  identify  the maternal,
medical, and societal factors that are related to birth weight or to ITN use. 

Another use of statistical models is to make the groups you are interested in
comparable with respect to other predictor variables. For example, if you
want  to  compare  two  treatments  you  want  the  groups  receiving  each
treatment to be as similar as possible. It may not be practical to match the
groups on a set of characteristics, so you can use a statistical model that
adjusts  for  differences  between  groups  based  on  a  set  of  independent
variables.

In the scientific literature you'll find many examples of interesting questions
that  are  explored  using  statistical  models.  This  chapter  provides  a  brief
overview of  some of  the commonly encountered models.  You'll  examine
some published models  and see  the  steps  involved in  building  statistical
models. (You'll have to study the models in more detail before you're ready
to build your own.)
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The Multiple Linear Regression Model
Amagloh et al. (2009) studied the relationship between infant birth weight
and maternal characteristics in a sample of one hundred Ghanian women.
Figure 7.1 is an estimated multiple linear regression equation for their data. 

The multiple linear regression model  is an extension of the straight line
regression model to allow more than one predictor variable. For the present
study, the multiple regression equation is:

predicted weight= B0 +B1(maternal education)+B2(duration of rest) 

+B3(pre-pregnancy weight)+B4(income)+B5(fuel)

Instead of a single slope, you now have a partial regression coefficient (B)
for each predictor variable in the model,  as well  as the constant  B0. The
method of least squares is used to estimate the coefficients. The coefficients
are chosen so that the sum of the squared differences between the observed
and predicted values (the residuals) of the dependent variable is as small as
possible. 
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Figure 7.1: Multiple Regression Equation for Predicting Birthweight



Exercise: Write the equation to predict weight using the coefficients in Figure 7.1. What
do you need to know to calculate the predicted birth weight for a particular infant? 

Read  the  paper  by  Amagloh.  Can  you  determine  what  are  possible  values  for  the
education variable? How about for fuel and income?

Testing Hypotheses About Population Values
In a multiple regression model, you can test hypotheses about the population
coefficients from which the sample is selected. The sample partial regression
coefficients  (B1 through  B5) are then estimates of the unknown population
coefficients 11 through 15 .

To test hypotheses about the population regression line when you have a
single  independent  variable,  your  data  must  be a  random sample  from a
population in which the following assumptions are met:

• The observations are independent

• The relationship between the two variables is linear

• For  each  value  of  the  independent  variable,  there  is  a  normal
distribution of values of the dependent variable.

• Those distributions have the same variance.

You need only  a  slight  modification of  the  assumptions  for  the  multiple
linear regression model. You must assume that the relationship between the
dependent variable and the independent variables is linear and that for each
combination  of values of the independent variables, the distribution of the
dependent variable is normal with a constant variance.
In  Figure 7.1 you see the estimated partial regression coefficient for each
variable in the model, the 95% confidence interval for the population value
of the coefficient, and the observed significance level for the test that the
true coefficient is 0.  Only for education can you reject the null hypothesis
that  the  true  partial  regression  coefficient  is  0.  That's  the  only  95%
confidence interval that doesn't include 0. The coefficient shows that for a
one point increase in maternal educational level, however the authors define
it, birthweight increases by 0.339 grams. 
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At the bottom of  Figure 7.1 you see an adjusted  R2  of 0.11. That's the
percent of the variability in birthweight that is accounted for by the predictor
variables. It's called the adjusted R2 because it adjusts the observed R2 to
better reflect how well the model would fit another sample from the same
population.  Adjusted  R2  also  lets  you  compare  models  with  different
numbers of predictor variables because it adjusts for the increase expected in
the sample R2  when additional variables are included in a model, even if
those variables aren't related to the dependent variable in the population.
Since the partial regression coefficients are calculated from your sample, the
model fits your data better than it would another sample of cases from the
same population. That's the case for all statistical models. A model always
fits the sample on which it is based better than it will fit another sample
from the same population.

R  is  the  Pearson  correlation  coefficient  between  the  observed  and
predicted values of the dependent variable. If the model predicts birth weight
perfectly,  R  is 1. If there is no linear relationship between the observed
and predicted values, R is 0. 

The test that  R2  is  0 is  the same as the test  that all  population partial
regression coefficients are 0. That is, 

11=12=13=...=1k=0

That's the observed significance level shown with the adjusted R2  value in
Figure 7.1. Based on the small observed significance level (0.008) you can
reject the null hypothesis that all partial regression coefficients are 0.

Interpreting the Partial Regression Coefficients
The partial regression coefficient for a variable tells you how much the value
of  the  dependent  variable  changes  when  the  value  of  that  independent
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variable increases by 1 and  the values of the other independent variables
stay the same. A positive coefficient means that the predicted value of the
dependent variable increases when the value of that independent variable
increases. The positive coefficient for education indicates that as education
increases so does infant birthweight, when the other independent variables
stay the same. A negative coefficient tells you that the predicted value of the
dependent  variable decreases when the value of  the independent  variable
increases. A negative coefficient for hours of exposure to smoke means that
birthweight decreases as exposure to smoke increases. 
A common mistake in regression analysis is to assume that a variable with a
large coefficient is more important than a variable with a small coefficient.
The size  of  the  coefficient  depends,  among other  things,  on the  units  in
which a variable is measured. If you multiply the values of a variable by
100, its coefficient will decrease by a factor of 100 while the coefficients for
the other  variables stay the same.  You can't  compare the coefficients  for
blood pressure in mm, income in dollars, and age in years. You can compute
standardized coefficients,  sometimes labeled Beta coefficients, which are
the regression coefficients when the dependent variable and all independent
variables are standardized to have a mean of 0 and a standard deviation of 1.
They are shown in Figure 7.4
When you have one predictor variable in a regression equation, if you reject
the null  hypothesis  that  the population value for  the slope is  0,  you can
conclude that there's  a linear relationship between the dependent variable
and the predictor. In statistical models with more than one predictor variable,
the  interpretation  of  the  coefficients  is  not  as  straightforward.  The
coefficient for a predictor variable depends not only on the relationship
between  the  predictor  and  the  dependent  variable  but  also  on  its
relationship to other predictor variables that are included in the model.
Consider  what  happens if  you try  to  predict  female life  expectancy in  a
country  from  four  predictor  variables:  births  per  1000  population,  the
logarithm of the number of doctors per 10,000 people, the log of the number
of beds per 10,000 people, and the percent of the population living in an
urban area. (Logarithms are taken of the number of doctors and the number
of hospital beds to make the relationship between those variables and female
life expectancy linear.)
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Figure 7.2: Four Predictor Model for Female Life Expectancy
> model1=lm(formula=lifeexpf~birthrat+lnbeds+lndocs+urban)

> summary(model1)

Call:

lm(formula = lifeexpf ~ birthrat + lnbeds +  lndocs + newurban)

Coefficients:

                              Estimate          Std    Error         t value               Pr(>|t|)

(Intercept)              65.4584        3.66963               17.838              < 2e-16

birthrat                    -0.31213      0.06214               -5.023                2.22e-06

lnbeds                       1.48590      0.73291                2.027                0.0453

lndocs                       3.09259      0.60726                5.093                1.67e-06

urban                       0.03408      0.02982                1.143                 0.2558

Residual standard error: 4.535 on 100 degrees of freedom

Multiple R-squared:  0.8412, Adjusted R-squared:  0.8348 

F-statistic: 132.4 on 4 and 100 DF,  p-value: < 2.2e-16

From Figure 7.2, based on the small observed significance levels, you can
conclude that all of these variables except for the percent of the population
living in an urban area are linearly related to female life expectancy. Now
look at Figure 7.3, which is the same model without the log of the number of
doctors. Note how all of the regression coefficients have changed. Percent
urban, which was not statistically significant in the four-variable model, is
now  highly  significant.  That's  because,  if  the  predictor  variables  are
correlated, their coefficients in a model depend on the other variables in
the model.  The percent of the population that is urban is highly correlated
with the log of the number of doctors. That makes sense. The number of
hospital beds, the number of doctors, and the percent of the population living
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in urban areas are all correlated. If you have hospital beds and number of
doctors in an equation,  the percent of urban population conveys little new
information. Much of the information about it  is  already supplied by the
other independent variables. 

Figure 7.3: Three Predictor Model for Female Life Expectancy

> model1=lm(formula=lifeexpf~birthrat+lnbeds+newurban)

> summary(model1)

Call:

lm(formula = lifeexpf ~birthrat + lnbeds + urban)

Coefficients:

                            Estimate     Std. Error       t value      Pr(>|t|)

(Intercept)              69.65479    3.99301      17.444       < 2e-16

birthrat                    -0.48269   0.05844        -8.260      5.91e-13

lnbeds                       2.11207   0.80680          2.618     0.010209

urban                       0.11188    0.02860         3.913      0.000166

Residual standard error: 5.064 on 101 degrees of freedom

Multiple R-squared:    0.8, Adjusted R-squared:  0.794 

F-statistic: 134.6 on 3 and 101 DF,  p-value: < 2.2e-16

Sometimes  when  two  predictor  variables  are  highly  correlated  with  the
dependent  variable,  you may find that  neither  of  them has a  statistically
significant coefficient in the model, or it may be that they have signs which
don't  make  sense.  Remember  that  the  coefficient  of  a  variable  always
depends on the other variables in the model. 

Exercise: Abu-Baker  (2010)  studied  the  relationship  between  secondhand  smoke
exposure and birth outcomes in Jordan. Figure 7.4 is the multiple regression model from
her paper.
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Write the multiple regression equation. What percent of the observed variability in birth
weights is explained by the model? Which variables are positively associated with birth
weight? Which are negatively associated? For which variables can you reject the null
hypothesis  that  the population value of  the  coefficient  is  0?  What  do you base your
conclusion on? Can you reject the null hypothesis that all the population coefficients are
all 0? What do you base your conclusion on? Which predictor variables do you think are
correlated?

Nominal Variables in Models
In a linear regression model, the coefficient for a predictor variable tells you
the change in the dependent variable associated with a one-unit change in
the predictor variable when the values of the other variables stay the same.
That  means  that  the  independent  variables  must  be  measured on a  scale
which has equal distances between values. It makes sense to talk about the
increase in birth weight for an additional year of maternal age. It  doesn't
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make sense to talk about the increase in birthweight for a one unit change in
region or religion or ethnic group.
In  Figure 7.1 there's  a coefficient for the education variable,  and another
coefficient for the fuel variable. That means that both education and fuel are
assumed to be measured on a scale in which intervals are equal. If education
is  measured  in  actual  years,  a  single  coefficient  may  be  appropriate.
However, Amagloh assigned the values 1 to 5 for education, where 1=No
education  or  up  to  primary  level,  2=Junior  High  School,  3=Vocational
training,  4=O'level/A'level/Senior  High School,  and 5=Tertiary.  Since  the
partial  regression  coefficient  predicts  the  same  increase  or  decrease  in
predicted birth weight from one category to the next, that means that the
difference between no education (code 1) and junior high school (code 2) is
taken to be the same as the change from Senior High School (code 4) to
Tertiary (code 5). That's probably not a realistic assumption.
The values for the fuel variable are equally troublesome. Since there is only
one coefficient for Fuel it is treated as a continuous variable. Each value of
Fuel is  multiplied  by the  same coefficient.  In  fact,  Fuel is  a  categorical
variable and treating the five categories Firewood, Charcoal, LPG, Firewood
and Charcoal, and Charcoal and LPG as equally-spaced is a poor strategy. 
If you want to include nominal or ordinal variables in any kind of statistical
model  you  must  estimate  a  separate  coefficient  for  each  value  of  the
variable. (One of the categories is selected as a reference category and the
coefficients  for  the  other  categories  indicate  the  difference  from  the
reference category. ) For example, you would have a coefficient for each of
the education categories. For dichotomous variables that have only values of
0 and 1 (0=male;1=female) no modifications are necessary, since there is
only one interval and the category coded with 0 is the reference category.

The Logistic Regression Model
If your dependent variable has only two values, such as lived/died; used an
ITN/didn't use an ITN; low birth weight/not low birth weight, then you can't
use a linear regression model, since a variable with only two values can't
have a normal distribution with a constant variance. Instead you want to
estimate the probability that an event occurs using a binary logistic model.
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(Either of the possible outcomes can be considered “the event”, since the
probability that one event occurs is just 1 minus the probability of the other.
If the probability that you use an ITN is 0.60, then the probability that you
don't use an ITN is 1-0.60, or 0.40. )
In logistic regression you estimate the probability that an event occur with
the model

 estimated probability #event %= 1
#1$e−Z %

where Z is the linear combination

Z=B0$B1 X 1$B2 X 2$...$B p X p

and  X1 to Xp are the values of the p independent variables and the Bi are the
logistic regression coefficients. 

The first plot in Figure 7.5 shows what the logistic regression curve looks
like when the sum of the predictors times their coefficients (Z) is on the
horizontal axis and the probability of the event is on the vertical axis. The
curve is S shaped.  The relationship between the predictor variables and the
probability is nonlinear.  

The second plot in Figure 7.5 is the plot of 

logit=log { # probability of event%
#1−probability of event %

}=log { # probability of event %
# probability of no event%

}

on the vertical axis and the linear combination of the predictor variables, Z,
on the horizontal axis. The relationship between the two variables is now
linear.
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The logistic regression equation can be written in terms of log of the odds
as:

log { # probability #event%%
# probability #no event %%

}=B0$B1 X 1$B2 X 2$...$B p X p

For  example,  if  instead of  predicting the  actual  birthweight  you want  to
predict the probability of an infant being low birth weight, taken to be an
observed birth weight less than 2500 grams, the logistic regression model is:
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log {# probability #low birthweight %%
# probability #not low birth weight%%

}=B0$B1#maternal education%

$B2#durationof rest %$B3# prepregnancy weight %$B4#income %$B5# fuel %

Figure 7.5: Logistic Regression Curve



As before,  the  maternal  education  and fuel  variables  need to  be  equally
spaced or dichotomous so that a single coefficient is appropriate. 
The right hand side of the formula looks just like the multiple regression
equation. The left hand side is the log of the odds ratio. The coefficients are
estimated  using  an  iterative  method  called  maximum  likelihood which
results in coefficients that make the observed results most likely. 
If your dependent variable is categorical and has more than two values, you
can  use  an  extension  of  the  binary  logistic  regression  model  called
multinomial regression. If the categories of the variable can be ordered in
some way you can fit what's called an ordinal regression model.

Interpreting Binary Logistic Regression Coefficients
As in multiple linear regression, the value of a coefficient for a variable in a
logistic  regression  model  depends  on  the  other  variables  in  the  logistic
regression model. In multiple linear regression the regression coefficient is
the estimated change in the dependent variable for a one-unit change in the
independent variable when the other independent variables are held constant.
The  interpretation  of  the  logistic  regression  is  more  complicated.  The
logistic regression coefficient for a variable is the change in the log odds for
a one-unit change in the independent variable, when all other independent
variables are held constant (and the variable is not included in any other
terms in the model.) That's why the coefficient is sometimes called a  logit
coefficient.

Let's see what this means. An author whose identity could not be determined
(Anonymous, 2012) analyzed data from Gambia to determine if there is an
association  between  head  of  household  exposure  to  malaria  prevention
messages and use of ITNs in children under age 5.  Figure 7.6 shows the
proportions of families with children under 5 who use ITNs subdivided by
whether they were exposed to malaria prevention messages. You see that of
those who heard or read the messages 61% use nets for their children, while
39% do not. Similarly of those who didn't hear or read messages 49% use
nets and 51% do not.
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Figure 7.6: Exposure to Malaria Prevention Messages and ITN Use

Message
Received

Probability
(Use ITN)

Probability
(Not Use
ITN)

Odds of ITN
use

Log of Odds
(base e)

Yes 0.61 0.39 0.61/0.39=1.54 0.43
No 0.49 0.51 0.46/0.51=0.95 -0.04

If you fit the logistic regression model:

where  message  has two values: 1 if message is received, 0 if it is not, the
coefficient for  message,  B1 is 0.47. That's the difference in the log of the
odds of ITN use for the two groups (0.43- -0.04). If you calculate eB1, you
get the odds ratio, a much more useful number. In this example, e0.47 is 1.62.
That's the ratio of the odds of ITN use in the group that has received the
message (1.54) to the odds of ITN use in the group that hasn't received the
message (0.95). An odds ratio of 1.62 indicates that the message-received
group has a 62% increase in the odds of  a  child sleeping under an ITN
compared to the odds for the group that did not receive the message.
In summary:

• If a coefficient is positive,  the estimated odds ratio is greater than 1,
which means that the odds of the event are increased.

• If  a coefficient is  negative,  the estimated odds ratio is  less than 1,
which means that the odds of the even are decreased.

• If a coefficient is 0, the odds ratio is 1, which means the odds are
unchanged.
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Logistic Regression Example

Figure  7.7 shows  an  excerpt  from  the  logistic  regression  model  from
Anonymous (2012). Since people who were exposed to malaria prevention
messages may differ from those who aren't, the author wanted to look at the
effect of exposure when other characteristics, such as age, region, and sex of
head of household, are held constant. For each of the variables you see the
logit  coefficient  (B),  its  standard error,  and the  odds  ratios.   Categorical
variables  are  correctly  treated in  this  model.  Each category is  a  separate
variable with its own coefficient.

*** p-value <0.01, ** p-value < 0.05, * p-value <0.10
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Figure 7.7: Logistic Regression Parameter
Estimates for ITN use



For  each  independent  variables  one  of  the  categories  of  the  variable  is
selected as the reference category (RC in the figure). For each variable, the
odds for each category are compared to the odds for the reference category
for  that  variable.  That's  why the odds ratio  for  the reference category is
always 1. Look at the independent variable labeled Exposure. There are two
groups, one of which was exposed to the malaria prevention message and the
other which was not. The odds ratio for those exposed compared to those not
exposed is 1.61. This is almost identical to the odds ratio you calculated
based on the single predictor. That tells you that controlling for the other
predictor variables had little effect on the coefficient for exposure. 

You can test hypotheses and calculate confidence intervals for the population
odds ratio. If the confidence interval for the odds ratio includes the value 1,
you cannot reject the null hypothesis that the true odds ratio is 1. Testing
whether the coefficient is 0 is equivalent to testing whether the odds ratio is
1.

Exercise: Zeleke et al. (2012) studied predictors of low birth weight babies in Ethiopia.
Their logistic regression model is shown in Figure 7.8. What is the dependent variable?
What are the predictor variables? For each give the reference category. Note that they do
not even report the logistic regression coefficients instead reporting just the odds ratios.

Consider the variable Residence which has the values Urban and Rural. Based on the
counts shown in the table, calculate the Crude OR for Rural compared to Urban. What is
the 95% confidence interval for the OR? Does it include the value of 1? Can you reject
the  null  hypothesis  that  place  of  residence  is  not  related  to  LBW? Now look at  the
Adjusted OR. That's the OR estimated from the logistic regression model. What is the
Adjusted OR value for Residence? Explain why the Crude OR and Adjusted OR values
are different.

Summarize the results from Figure 7.8.
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Interactions Between Variables

Both  the  multiple  linear  regression  models  and  the  logistic  regression
models  we've  considered so far  looked at  the contributions of  individual
independent  variables  to  predicting the  dependent  variable.  You assumed
that the effect of a variable is the same for all values of other variables in the
model. For example, you assume that the effect of a laboratory value is the
same over the entire range of ages or the same for men and women.  For
example, in Figure 1.1 there is one logistic regression coefficient for location
(urban versus rural), and one logistic regression coefficient for the gender of
the head of household. This implies that males in both rural and urban areas
respond in  the  same way.  The  model  does  not  allow for  the  interaction
between the two variables. In statistics  interaction means that two factors
considered together  have more (or  less)  of  an effect  than when they are
considered individually. For example, the probability of rural-males using an
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ITN is more (or less) than is predicted from the coefficient of rural and the
coefficient of male. If you're studying the risk of lung cancer you may find
that  smoking  and  inhaling  asbestos  fibers  both  increase  the  risk  of  lung
cancer  when  considered  individually.  However,  people  who  smoke  and
inhale asbestos fibers are much more likely to develop lung cancer than you
predict  based  on  the  individual  smoking  and  asbestos  coefficients.  To
capture the joint effect of two or more variables interaction terms  must be
included in a model. (For categorical variables interaction coefficients can
be constructed in several ways.)
A linear regression model with an interaction term between the variables X1

and X2  is written as

predicted dependent variable=B0$B1 X 1$B2 X 2$B3# X 1 X 2%

The coefficient  B3 is for the interaction effect. If both of the variables are
coded  as  0  or  1  (absent  or  present),  it  tells  you  how  much  more  the
dependent variable changes when both variables are present than you would
predict from their individual effects. 
There are several different ways to code categorical variables and they result
in coefficients which have different interpretations. The coefficient for each
category may tell you how much the category effect differs from the average
effect  of  all  categories,  or  the category may be compared to  a  reference
category. Different coding schemes result in different coefficients but not in
different conclusions.

Bejon (2009) studied ITN use and children's age on malaria infection. The
results of logistic regression models are in Figure 7.9. Two different models
were examined: febrile vs asymptomatic, and any malaria vs uninfected. The
interaction term between ITN use and age greater than 42 months (old) is
shown as ITN use*Old. The odds ratio for the interaction term for the first
model is 6.5, indicating that the odds of febrile malaria as compared to the
odds of asymptomatic malaria are higher for older children who slept under
an ITN as compared to all other children.
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Model Discrimination

Model Discrimination is the ability of a model to distinguish between cases
who  experience  the  event  and  those  that  don't,  based  on  the  estimated
probability that the event occurs. 
A perfect model always assigns higher probabilities to cases who experience
the event than to cases who don't. The c-statistic is a measure of a model's
ability to discriminate between the two sets of cases. It is the proportion of
pairs of cases with different observed outcomes in which the model results
in a higher probability for the case with the event than for the cases without
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the  event.  The  c-statistic  is  equal  to  the  area  under  the  ROC (Receiver
Operating Characteristic) curve, sometimes just called the Area Under the
Curve (AUC). The c-statistic ranges in value from 0.5 to 1. A value of 0.5
indicates that the model is no better than flipping a coin for assigning cases
to  groups.  A value  of  1  means  that  the  model  always  assigns  higher
probabilities to cases with the event than to cases without the event.
In  the  previous  chapter  you  considered  various  easily  obtainable  infant
measurements as predictors of birth weight. Elizabeth et al. (2013) evaluated
five  infant  measures  as  predictors  of  birth  weight.  Besides  reporting  the
correlation coefficients shown in Figure 7.10, they also report the AUC and
its 95% confidence interval. To calculate the AUC each infant is classified
into one of two groups based on birth weight (less than 2500 grams and
greater than 2500 grams) and a logistic regression model is estimated using
each of the variables alone. You see that foot length has the largest AUC, as
well as the largest correlation coefficient.

Exercise: Read the Elizabeth (2013) paper and calculate the sensitivity and specificity
values shown in their Table 3 from the counts. Calculate the statistics shown  in Table 4
from the counts in Table 3.
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Figure 7.10: Correlation of anthropometric measures with birth weight



Analyzing Survival Data

Often you are interested in the time interval between two events: diagnosis
and  death;  surgery  and  recurrence  of  a  disease;  starting  university  and
completion; release from prison and return. When you study time between
two events you may face two problems: not everyone experiences the second
event, and people are observed for different lengths of time. Not all patients
experience recurrence of a disease and not all students finish their degrees.
Cases  who  do  not  experience  the  final  event  are  said  to  be  censored.
Similarly not everyone is diagnosed on the same day, or released from prison
on the same day.

If you eliminate people who have not actually experienced the second event
and calculate an average survival time or time to recurrence, your results
will be flawed since data from people who are disease free or not back in
person  are  ignored.  Special  statistical  models,  called  survival  time  (or
failure-time)  methods,  are  used  to  analyze  the  time  between  two  well
defined events.  Two frequently used methods for analyzing survival time
data are Kaplan-Meier estimates and the Cox proportional hazards model.

Kaplan-Meier estimates are based on subdividing the time period after the
initial event into smaller time intervals based on when events occur. Cases
contribute  survival  information to  intervals  during which they have been
observed. This makes best use of the available information. At each time
point you obtain an estimate of the cumulative percent still surviving. You
can  estimate  the  percent  dead  by  subtracting  the  percent  surviving  from
100%. 

Consider  Figure  7.11 which  shows  the  percent  of  children  who  died  at
various time points after administration of antiretroviral treatment in South
Africa (Davies et al., 2009). You see that 24 months after start of treatment,
about 4% of children who started treatment when they were older than 36
months died. For children who started treatment when they were less than 12
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months old, almost 17% are dead.

Figure 7.11: Kaplan Meier Survival Curve

Special methods are also available for modeling predictors of survival time.
The  Cox proportional  hazards  model is  most  often  used.  The  hazard
function, which tells you how likely a case is to experience an event given
that the case has survived to that time, is expressed as a function of a linear
combination of predictor variables.  

The hazard ratio (HR) is the ratio of the rate at which patients in two groups
experience  an  event.  A  hazard  ratio  of  1  means  that  the  two  groups
experience the event at equal rates. A hazard ratio of 2 implies that, at any
time, cases in one group are experiencing twice the rate of the event as the
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other group. 

Exercise: Which variables in  Figure 7.12 are associated with increased risk of death?
How would you tell which variables are significantly associated with risk of death based
only on the 95% confidence intervals.

Exercise: Read the Bejon (2009) paper and summarize the results for the Cox survival
models. How do the results of these models compare to the logistic models? Are you
convinced that there is an age by ITN interaction effect? Explain what that means.
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Figure 7.12 shows hazard ratios for the Davies study, both with and without
adjustment (adjusted and crude HR) for the other predictor variables. As in
logistic regression one of the categories is selected as the reference category.
You see that children who started ART when they were less than 1 year old
have a crude HR of 3.38 compared to children who started ART when they
were older than 3 years. When adjusted for other variables in the model the
HR decreases to 2.00.

Figure 7.12: Predictors of Mortality



Summary
This chapter focused on presenting the basics of the models you will most
often encountered in the medical literature. If you are building the model
yourself there are many other issues you must consider. For example: Do the
data violate the assumptions needed for the particular model? How will you
determine  which  predictor  variables  to  include  in  a  model?  Is  the
relationship  between  each  of  these  variables  and  the  dependent  variable
linear? Do you need to transform any of the variables? Are interaction terms
necessary? Are there points that have too much influence on the estimated
coefficients? How well does the model fit? 
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